The evaluation of land use cover changes through the composite approach of Landsat 8 and the land use capability index for the Bedadung watershed


  • Basuki Basuki Department of Soil Science, University of Jember
  • Bambang Hermiyanto Department of Soil Science, University of Jember
  • Subhan Arif Budiman Department of Soil Science, University of Jember
  • Fariz Kustiawan Alfarisy Department of Plant Protection, University of Jember



composite map, evaluation, land capability, land cover, watershed


Land use changes become a problem that contributes to the decline in the watershed function and performance. Bedadung watershed divides Jember Regency, which has upstream from Mount Raung and a downstream Indonesian Ocean. During the last ten years in Jember, there has been a flood from the overflow of the Bedadung river, which is unable to accommodate water from upstream. It is alleged that the cause of flooding in upstream of the Bedadung watershed is land cover and land capability that has changed. The purpose of this study was to assess land use changes using a composite approach to Landsat 8 imagery and land capability index for the upstream of the Bedadung watershed. The results showed that land cover of the Kesambi sub-watershed during 1995-2020, forest decreased by 34.74%, settlements and open land decreased by 47.25%, dry land increased by 120%, while plantations and rainfed rice fields were fixed. The decrease in forest area can disrupt the water cycle, thereby increasing runoff volume and water discharge, causing flooding downstream of the Bedadung watershed and upstream of the Bedadung watershed. Land capability evaluation of the upstream of Kesambi sub-watershed, area of Bedadung watershed was mostly in class III, covering 5782.9 hectares (85.53%), class IV covering 214.8 hectares (3.18%), class VI covering 379.7 hectares (5.62%), and class VII covering 383.9 hectares (5.68%) with limiting factors of effective soil depth, land slope/slope, erosion sensitivity, and drainage. Areas with class III land capability covering land mapping units 1, 2, 3, 6, and 7 can be utilized as agricultural with good conservation technology, while land mapping units 4.5, and 8 are only capable for forest areas.


Ambarwulan, W., Widiatmaka, and Nahib, I. 2018. Land use/land cover and land capability data for evaluating land utilization and official land use planning in Indramayu Regency, West Java, Indonesia. IOP Conference Series: Earth and Environmental Science 149(1), doi:10.1088/1755-1315/149/1/012006.

Andriani, Putranto, D.D.A., Affandi, A.K. and Ibrahim, E. 2018. Interpretation of land use and land cover at lowland areas using by NDVI and NDBI. Ecology, Environment and Conservation 24(2):651-657.

Asdak, C., Supian, S. and Subiyanto. 2018. Watershed management strategies for flood mitigation: A case study of Jakarta’s flooding. Weather and Climate Extremes 21:117-122, doi:10.1016/j.wace.2018.08.002.

Basuki, B. 2020. Mapping typology and suitability of sugar cane varieties based on land and soil characteristics in Jatiroto Lumajang. Buletin Tanaman Tembakau, Serat & Minyak Industri 12(1):34-44, doi:10.21082/btsm.v12n1.2020.34-44 (in Indonesian).

Basuki, B., Budiman, S.A., Mutmainnah, L. and Rosyady, M.G. 2022. Soil damage potential index based on weighting scoring analysis and utilization of Geographical Information Systems. Jurnal Tenik Pertanian Lampung 11(4):601-616 (in Indonesian).

Basuki, B., Mandala, M., Bowo, C. and Fitriani, V. 2022. Evaluation of the suitability of a sugarcane plant in mount Argopura’s volcanic land using a geographic information system. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem 10(1):145-160, doi:10.29303/jrpb.v10i1.315 (in Indonesian).

Basuki, B., Romadhona, S., Sari, V.K. and Erdiansyah, I. 2021. Climate characteristics and volcanic soils on the west side of mount Ijen, East Java as the basis for determining the management of rice plant variety (Oriza sativa L.). Jurnal Penelitian Pertanian Terapan 21(2):108-117 (in Indonesian).

Bhandari, S., Jhadav, S.T. and Kumar, S. 2013. Land capability classification and crop suitability assessment in a watershed using RS And GIS-a case study of Watershed in Dehradun, Uttarakhand. International 14th ESRI India User Conference 1-9.

Chasmer, L., Cobbaert, D., Mahoney, C., Millard, K., Peters, D., Devito, K., Brisco, B., Hopkinson, C., Merchant, M., Montgomery, J., Nelson, K. and Niemann, O. 2020. Remote sensing of boreal wetlands 1: Data use for policy and management. Remote Sensing 12(8), doi:10.3390/RS12081320.

Chastain, R., Housman, I., Goldstein, J. and Finco, M. 2019. Empirical cross-sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sensing of Environment 221:274-285, doi:10.1016 /j.rse.2018.11.012.

Dunea, D., Bretcan, P., Tanislav, D., Serban, G., Teodorescu, R., Iordache, S., Petrescu, N. and Tuchiu, E. 2020. Evaluation of water quality in Ialomita river basin in relationship with land cover patterns. Water (Switzerland)12(3), doi:10.3390/w12030735.

Ernanda, H., Hamzah, Z., Setyowati, D.I., Handayani, A.T. and Indriana, T. 2018. The benefits of the information system of water pollution at Bedadung river towards oral and dental health of the community. Journal of Dentomaxillofacial Science 3(2):91, doi:10.15562/jdmfs.v3i2.738.

Firmansyah, A., Arifin, E.F.N., Nurfalah, I., Ridwana, R. and Himayah, S. 2021. Utilization of Landsat 8 and Sentinel 2A satellite imagery in the identification of critical mangrove land in the Ciemas District, Sukabumi Regency. Jurnal Pendidikan dan Ilmu Geografi 6(1):21-34, doi:10.21067/jpig.v6i1.5198 (in Indonesian).

Fitri, R., Tarigan, S.D., Sitorus, S.R.P. and Rachman, L.M. 2018. Land use planning for agroforestry development in the upstream of Ciliwung River Watershed, West Java Province. Tata Kelola 20(2):148-158 (in Indonesian).

Garg, K.K., Anantha, K.H., Dixit, S., Nune, R., Venkataradha, A., Wable, P., Budama, N. and Singh, R. 2022. Impact of raised beds on surface runoff and soil loss in Alfisols and Vertisols. Catena 211:105972, doi:10.1016/j.catena.2021.105972.

Geitner, C., Mayr, A., Rutzinger, M., Löbmann, M. T., Tonin, R., Zerbe, S., Wellstein, C., Markart, G. and Kohl, B. 2021. Shallow erosion on grassland slopes in the European Alps-Geomorphological classification, spatio-temporal analysis, and understanding snow and vegetation impacts. Geomorphology 373:107446, doi:10.1016/j.geomorph.2020.107446.

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., … Chen, J. 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing 34(7):2607-2654, doi:10.1080/01431161.2012.748992.

Gumma, M.K., Thenkabail, P.S., Hideto, F., Nelson, A., Dheeravath, V., Busia, D. and Rala, A. 2011) Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sensing 3(4):816-835, doi:10.3390/rs3040816.

Gunnell, K., Mulligan, M., Francis, R.A. and Hole, D.G. 2019. Evaluating natural infrastructure for flood management within the watersheds of selected global cities. Science of the Total Environment 670:411-424, doi:10.1016/j.scitotenv.2019.03.212.

Harijanto, M., Sinukaban, N., Tarigan, S.D. and Haridjaja, O. 2016. Evaluation of land capability for land use direction in the Lawo Watershed, South Sulawesi. Jurnal Penelitian Kehutanan Wallacea 5(11):1-11 (in Indonesian).

Huerta, S., Fernández-García, V., Calvo, L. and Marcos, E. 2020. Soil resistance to burn severity in different forest ecosystems in the framework of a wildfire. Forests 11(7), doi:10.3390/F11070773.

Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X. and Li, B. 2014. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International 29(8):941-951, doi:10.1080/10106049.2014.894586.

Jourgholami, M., Karami, S., Tavankar, F., Lo Monaco, A. and Picchio, R. 2021. Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests 12(1):1-19, doi:10.3390/f12010049.

Joyce, K.E., Belliss, S.E., Samsonov, S.V., McNeill, S.J. and Glassey, P.J. 2009. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography 33(2):183-207, doi:10.1177/0309133309339563.

Li, J.C., Wang, W.L., Hu, G.Y. and Wei, Z.H. 2010. Impacts of land use and land cover change on ecosystem service values in Maqu County. Zhongguo Huanjing Kexue/China Environmental Science 30(11):1579-1584, doi:10.1016/j.heliyon.2022.e12246.

Liu, Z., Rong, L. and Wei, W. 2023. Impacts of land use/cover change on water balance by using the SWAT model in a typical loess hilly watershed of China. Geography and Sustainability 4(1):19-28, doi:10.1016/j.geosus.2022.11.006.

Maryati, S. 2013. Land capability evaluation of reclamation area in Indonesia coal mining using LCLP Software. Procedia Earth and Planetary Science 6:465-473, doi:10.1016/j.proeps.2013.01.061.

Mohammad, A.G. and Adam, M.A. 2010. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 81(2):97-103, doi:10.1016/j.catena.2010.01.008.

Nguyen, C.T., Chidthaisong, A., Diem, P.K. and Huo, L.Z. 2021. A modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia using Landsat 8. Land 10(3):1-18, doi:10.3390/land10030231.

Pertami, R.R.D., Eliyatiningsih, Salim, A. and Basuki. 2022. Land use optimization based on land suitability class for the development of red chili plants in Jember District. Jurnal Tanah dan Sumberdaya Lahan 9(1):163-170, doi:10.21776/ub.jtsl.2022.009.1.18 (in Indonesian).

Phiri, D. and Morgenroth, J. 2017. Developments in Landsat land cover classification methods: A review. Remote Sensing 9(9), doi:10.3390/rs9090967.

Ping, L.Y., Boon Sung, C.T., Joo, G.K. and Moradi, A. 2012. Effects of four soil conservation methods on soil aggregate stability. Malaysian Journal of Soil Science 16(1):43-56.

Quintano, C., Fernández-Manso, A. and Fernández-Manso, O. 2018. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. International Journal of Applied Earth Observation and Geoinformation 64:221-225, doi:10.1016/j.jag.2017.09.014.

Rahimzadegan, M. and Janani, A.S. 2019. Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agricultural Water Management 217(March):383-390, doi:10.1016/j.agwat.2019.03.018.

Ramadanningrum, D.P., Kamal, M. and Murti, S.H. 2020. Image-based tea yield estimation using Landsat-8 OLI and Sentinel-2B images. Remote Sensing Applications: Society and Environment 20(July):100424, doi:10.1016/j.rsase.2020.100424.

Rodriguez, D.G P. 2020. An assessment of the site-specific nutrient management (SSNM) strategy for irrigated rice in Asia. Agriculture (Switzerland) 10(11):1-28, doi:10.3390/agriculture10110559.

Saida, Abdullah, Jusoff, K. and Ilsan, M. 2013. Evaluation of land capability for agriculture in the upstream of Jeneberang Watershed, South Sulawesi. American-Eurasian Journal of Agriculture & Environment 13(8):1027-1033, doi:10.5829/idosi.aejaes. 2013.13.08.11014.

Senanayake, S., Pradhan, B., Huete, A. and Brennan, J. 2020. A review on assessing and mapping soil erosion hazard using geo-informatics technology for farming system management. Remote Sensing 12(24):1-25, doi:10.3390/rs12244063.

Sitepu, F., Selintung, M. and Harianto, T. 2017. The influence of rainfall intensity and slope of the slope on erosion that has the potential for landslides. Jurnal Penelitian Enjiniring 21(1):23-27, doi:10.25042/jpe.052017.03 (in Indonesian).

Storey, J., Roy, D.P., Masek, J., Gascon, F., Dwyer, J. and Choate, M. 2016. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sensing of Environment 186(2016):121-122, doi:10.1016/j.rse.2016.08.025.

Stuurop, J.C., van der Zee, S.E.A.T.M. and French, H.K. 2022. The influence of soil texture and environmental conditions on frozen soil infiltration: A numerical investigation. Cold Regions Science and Technology 194:103456, doi:10.1016/j.coldregions.2021.103456.

Sugianto, S., Deli, A., Miswar, E., Rusdi, M. and Irham, M. 2022. The effect of land use and land cover changes on flood occurrence in Teunom Watershed, Aceh Jaya. Land 11(8), doi:10.3390/land11081271.

Tassi, A., Gigante, D., Modica, G., Di Martino, L. and Vizzari, M. 2021. Pixel-vs. Object-based Landsat 8 data classification in Google earth engine using random forest: The case study of Majella national park. Remote Sensing 13(12), doi:10.3390/rs13122299.

Teka, K., Haftu, M., Ostwald, M. and Cederberg, C. 2020. Can integrated watershed management reduce soil erosion and improve livelihoods? A study from northern Ethiopia. International Soil and Water Conservation Research 8(3):266-276, doi:10.1016/ j.iswcr.2020.06.007.

Tram, V.N.Q., Somura, H. and Moroizumi, T. 2021. The impacts of land-use input conditions on flow and sediment discharge in the Dakbla watershed, central highlands of Vietnam. Water (Switzerland) 13(5), doi:10.3390/w13050627.

Vahid, S., Termeh, R., Niaraki, A.S. and Choi, S.M. 2021. Spatial modeling of Asthma †prone areas using remote sensing and ensemble machine learning algorithms. Remote Sensing 13(16):3222, doi:10.3390/rs13163222.

Wulandari, C., Budiono, P., Yuwono, S.B. and Herwanti, S. 2014. Adoption of agroforestry patterns and crop systems around register 19 forest parks, Lampung Province, Indonesia. Jurnal Manajemen Hutan Tropika 20(2):86-93, doi:10.7226/jtfm.20.2.86.

Yan, C.A., Zhang, W., Zhang, Z., Liu, Y., Deng, C. and Nie, N. 2015. Assessment of water quality and identification of polluted risky regions based on field observations & GIS in the Honghe River Watershed, China. PLoS ONE 10(3):1-13, doi:10.1371/journal.pone.0119130.

Yu, W., Zhou, W., Dawa, Z., Wang, J., Qian, Y. and Wang, W. 2021. Quantifying urban vegetation dynamics from a process perspective using temporally dense Landsat imagery. Remote Sensing 13(16):3217, doi:10.3390/rs13163217.

Yulianto, F., Khomarudin, M.R., Hermawan, E., Nugroho, N.P., Chulafak, G.A., Nugroho, G., Nugroho, U.C., Suwarsono, Fitriana, H.L. and Priyanto, E. 2022. Spatial and temporal distribution of estimated surface runoff caused by land use/land cover changes in the upstream Citarum watershed, West Java, Indonesia. Journal of Degraded and Mining Lands Management 9(2):3293-3305, doi:10.15243/jdmlm.2022.092.3293.

Zhang, L., Wang, J., Bai, Z. and Lv, C. 2015. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 128:44–53, doi:10.1016/j.catena.2015.01.016.

Zhang, Q., Qin, W., Cao, W., Jiao, J., Yin, Z. and Xu, H. 2022. Response of erosion reduction effect of typical soil and water conservation measures in cropland to rainfall and slope gradient changes and their applicable range in the Chinese Mollisols Region, Northeast China. International Soil and Water Conservation Research doi:10.1016/j.iswcr.2022.10.005.








How to Cite

Basuki, B., Hermiyanto, B., Budiman, S. A., & Alfarisy, F. K. (2023). The evaluation of land use cover changes through the composite approach of Landsat 8 and the land use capability index for the Bedadung watershed. Journal of Degraded and Mining Lands Management, 10(4), 4659–4672.



Research Article