Ecological assessment of different electrokinetic remediation strategies: a pilot scale study


  • Yudith Vega Paramitadevi The Vocational Studies of IPB University
  • Beata Ratnawati The Vocational Studies of IPB University
  • Agus Jatnika Effendy Bandung Institute of Technology
  • Syarif Hidayat Bandung Institute of Technology
  • Mochamad Arief Budihardjo Diponegoro University
  • Bimastyaji Surya Ramadan Diponegoro University
  • Dimas Ardi Prasetya The Vocational Studies of IPB University
  • Ivone Wulandari Budiharto The Vocational Studies of IPB University



b&v analysis, ecological assessment, electrokinetic remediation, life cycle assessment, open LCA


The electrokinetic remediation method can function as a primary or secondary technology and can be applied in conjunction with other physical and biological methods, such as soil washing, phytoremediation, and bioremediation. Environmental impacts arising from the electrokinetic remediation process can be determined using life cycle assessment analysis (LCA) or other tools. This study compared the conventional electrokinetic remediation strategy with two hybrid strategies: electrokinetic-phytoremediation (EKR-Phyto) and electrokinetic-bioremediation (EKR-Bio). The environmental performance of the three strategies is then tested through LCA analysis. The database used was The Ecoinvent, and the freeware software used during the inventory stage was OpenLCA. The impact assessment stage was used in the Recipe I (2016) midpoints, Available Water Remaining (AWARE) midpoint, Intergovernmental Panel Climate Change (IPCC) midpoint (2003), UNEP Society of Environmental Toxicology (USEtox) midpoint, and cumulative energy demand midpoint. The significance of the analysis results was not obtained for the GWP parameter but for the freshwater eutrophication parameter. Among the three strategies, the EKR-Phyto strategy showed the highest significance in eutrophication but the lowest significance in land change. Substitution of chemical fertilizers into natural fertilizers in the EKR-Phyto strategy can be an opportunity for environmental sustainability. The highest impact for ecological analysis of the three strategies was EKR-Phyto in terms of GWP, the sum of primary energy, Acidification Potential (AP), and Photochemical Ozone Creation Potential (POCP).


Amponsah, N.Y., Wang, J. and Zhao, L. 2018 A review of life cycle greenhouse gas (GHG) emissions of commonly used ex-situ soil treatment technologies. Journal of Cleaner Production 186:514-525, doi:10.1016/j.jclepro.2018.03.164.

Braun, A.B., da Silva Trentin, A.W., Visentin, C. and Thomé. A. 2020.Relevance of sustainable remediation to contaminated sites managed in developed and developing countries: Case of Brazil. Land Use Policy 94:104533, doi:10.1016/j.landusepol.2020.104533.

Dobrescu, A.-I., Ebenberger, A., Harlfinger, J., Griebler, U., Klerings, I., Nussbaumer-Streit, B., Chapman, A., Affengruber, L. and Gartlehner, G. 2022. Effectiveness of interventions for the remediation of lead-contaminated soil to prevent or reduce lead exposure - a systematic review. Science of the Total Environment 806:150480, doi:10.1016/j.scitotenv.2021.150480.

Favara, P.J., Krieger, T., Boughton, B., Fisher, A. and Bhargava, M. 2011. Guidance for performing footprint analyses and life-cycle assessments for the remediation industry. Remediation Journal 21(3):39-79, doi:10.1002/rem.20289.

Fernández-Marchante, C.M., Souza, F.L., Millán, M., Lobato, J. and Rodrigo, M.A 2022. Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes? Science of the Total Environment 803:149991, doi:10.1016/ j.scitotenv.2021.149991.

Ferrucci, A., Vocciante, M., Bagatin, R. and Ferro, S. 2017. Electrokinetic remediation of soils contaminated by potentially toxic metals: Dedicated analytical tools for assessing the contamination baseline in a complex scenario. Journal of Environmental Management 203(Pt 3):1163-1168, doi:10.1016/j.jenvman.2017.02.037.

Gill, R.T., Thornton, S.F., Harbottle, M.J. and Smith, J. 2016. Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site. Journal of Environmental Management 184(Pt 1):120-131, doi:10.1016/j.jenvman.2016.07.036.

Hou, D. and O’Connor, D. 2020. Green and sustainable remediation: past, present, and future developments. In: Hou, D. (ed.) Sustainable Remediation of Contaminated Soil and Groundwater. Butterworth-Heinemann, pp. 19-42, doi:10.1016/B978-0-12-817982-6.00002-1.

Huijbregts, M.A.J., Steinmann, Z.J.N., Elshout, P.M.F., Stam, G., Verones., F., Vieira, M., Zijp, M., Hollander, A. and van Zelm, R. 2017. ReCiPe 2016 v1.1 A harmonized life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment 22:138–147

Kim, D.-H., Yoo, J.-C, Hwang, B.-R., Yang, J.-S. and Baek, K. 2014.Environmental assessment on electrokinetic remediation of the multimetal-contaminated site: a case study. Environmental Science, and Pollution Research International 21(10):6751-6758, doi:10.1007/s11356-014-2597-1.

Mao, X., Shao, X. and Zhang, Z. 2019.Pilot-scale electrokinetic remediation of lead polluted field sediments: model designation, numerical simulation, and feasibility evaluation. Environmental Sciences Europe 31(1):1-20, doi:10.1186/s12302-019-0209-x.

Piccinno, F., Hischier, R., Seeger, S. and Som, C. (2016. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies, Journal of Cleaner Production 135:1085-1097, doi:10.1016/j.jclepro.2016.06.164.

Risco, C., López-Vizcaíno, R., Sáez, C., Yustres, A., Cañizares, P., Navarro, V. and Rodrigo, M.A. 2016. Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant. Chemical Engineering Journal 285:128-136, doi:10.1016/j.cej.2015.10.011.

Teuteberg, F., Schebek, L. and Hempel, M. 2019. Progress in Life Cycle Assessment 2018. Springer.

Vicentin, C., da Silva Trentin, A.W., Braun, A.B. and Thomé, A. 2019. Application of life cycle assessment as tool for evaluating the sustainability of contaminated sites remediation: A systematic and bibliographic analysis. Science of the Total Environment 672:893-905, doi:10.1016/j.scitotenv.2019.04.034.

Villen-Guzman, M., Garcia-Rubio, A., Paz-Garcia, J., Verenda-Alonso, C., Gomez-Lahoz, C. and Rodriguez-Marono, J.M. 2018. Ageing effects on the mobility of Pb in soil: influence on the energy requirements in electro remediation. Chemosphere 213:351-357, doi:10.1016/j.chemosphere.2018.09.039.

Vocciante, M., Bagatin, R. and Ferro, S. 2017. Enhancements in electrokinetic remediation technology: focus on water management and wastewater recovery. Chemical Engineering Journal 309:708-716, doi:10.1016/j.cej.2016.10.091.

Vocciante, M., Caretta, A., Bua, L., Bagatin, R. and Ferro, S. 2016. Enhancements in electrokinetic remediation technology: environmental assessment in comparison with other configurations and consolidated solutions. Chemical Engineering Journal 289:123-134,

Vocciante, M., De Folly, A., Franchi, E., Petruzzelli, G. and Ferro, S. 2021. CO2 footprint analysis of consolidated and innovative technologies in remediation activities. Journal of Cleaner Production 297:126723, doi:10.1016/j.jclepro.2021.126723.

Wang, Y., Li, A. and Cui, C. (2021. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere 265:129071, doi:10.1016/j.chemosphere.2020.129071.

Wanitsawatwichai, K. and Sampanpanish, P. 2021. The combination of phytoremediation and electrokinetics remediation technology on arsenic-contaminated remediation in tailing storage facilities from the gold mine. Heliyon 7(8): e07736, doi:10.1016/j.heliyon.2021.e07736.

Yasutaka, T., Zhang, H., Murayama, K., Hama, Y., Tsukada, Y. and Furukawa, Y. 2016. Development of a green remediation tool in Japan. Science of the Total Environment 563-564:813-821, doi:10.1016/j.scitotenv.2016.01.018.

Zhang, T., Zou, H., Ji, M., Li, X., Li, L. and Tang, T. 2014. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environmental Science and Pollution Research 21(4):3126-3133, doi:10.1007/s11356-013-2274-9.








How to Cite

Paramitadevi, Y. V., Ratnawati, B., Effendy, A. J., Hidayat, S., Budihardjo, M. A., Ramadan, B. S., Prasetya, D. A., & Budiharto, I. W. (2023). Ecological assessment of different electrokinetic remediation strategies: a pilot scale study. Journal of Degraded and Mining Lands Management, 10(2), 4119–4127.



Research Article