Land subsidence assessment on karst based on resistivity and geotechnical parameters




Cavities, landslide, limestone, soil, water


Karst is geomorphologically composed of limestone. However, limestone is very susceptible to weathering due to the influence of water, which can cause land subsidence. The resistivity method is often used to determine the potential for land subsidence, while geotechnical methods are commonly considered capable of juxtaposing with resistivity methods to support interpretation accuracy. The current research was conducted to determine the potential for land subsidence in the karst area in Lappae, South Sulawesi, Indonesia. The resistivity method utilizes a dipole-dipole configuration, and the geotechnical parameters used are uniformity coefficient, curvature coefficient, water content, shear angle, and cohesion. The results obtained can be classified into northern and southern areas. The classification of these areas is based on the resistivity results, which show very high resistivity values        (> 4800 Ωm) in the southern part. This value is assumed to be a feature of the cave. Caves are predominantly distributed in the southern part. The five geotechnical parameters show that the northern part, which was composed of massive limestone (150-1600 Ωm), is a stable area, though it is highly prone to landslides. As for the southern part, geotechnical parameters suggest that the presence of caves is the primary factor contributing to the very high potential for landslides in this region. These results indicate that, based on the evaluation of this location, it is not feasible for land use. In addition, in spite of the low cost and rapid methods, the combination of these methods shows good results.


Abd El Aal, A. 2017. Identification and characterization of near surface cavities in Tuwaiq Mountain Limestone, Riyadh, KSA, “detection and treatment.†Egyptian Journal of Petroleum 26(1):215-223, doi:10.1016/j.ejpe.2016.04.004.

Abidin, M.H.B.Z., Wijeyesekera, D.C., Saad, R. and Ahmad, F. 2013. The influence of soil moisture content and grain size characteristics on its field electrical resistivity. Electronic Journal of Geotechnical Engineering 18 D(March):699-705.

Acosta, J.A., Gabarrón, M., Martínezâ€segura, M., Martínezâ€martínez, S., Faz, Ã., Pérezâ€pastor, A., Gómezâ€lópez, M.D. and Zornoza, R. 2022. Soil water content prediction using Electrical Resistivity Tomography (ERT) in Mediterranean tree orchard soils. Sensors 22(4):1-13, doi:10.3390/s22041365.

Arisona, A., Ishola, K.S. and Nawawi, M.N.M. 2020. Subsurface void mapping using geophysical and geotechnical techniques with uncertainties estimation: case study of Kinta Valley, Perak, Malaysia. Springer Nature Applied Sciences 2(1171):1-12, doi:10.1007/s42452-020-2967-x.

Augie, A.I., Saleh, M., Ologe, O., Salako, K.A., Rafiu, A.A. and Yahaya, M. 2022. Correlation of 2D electrical resistivity and self-potential methods for the assessment of the integrity of Goronyo Dam NW Nigeria. Chiang Mai University Journal of Natural Sciences 21(3):e2022043, doi:10.12982/CMUJNS.2022.043.

Bakhshipour, Z., Huat, B.B.K., Ibrahim, S., Asadi, A. and Kura, N.U. 2013. Application of geophysical techniques for 3D geohazard mapping to delineate cavities and potential sinkholes in the Northern Part of Kuala Lumpur, Malaysia. The Scientific World Journal 629476:1-11, doi:10.1155/2013/629476.

Baluch, K., Kim, J.G., Kim, J.G., Ko, Y.H., Jung, S.W. and Baluch, S.Q. 2022. Assessment of sinkholes investigations in Jangseong-Gun Area, South Korea, and recommendations for similar studies. International Journal of Environmental Research and Public Health 19(3):1111, doi:10.3390/ijerph19031111.

Chen, M.L., Wu, G.J., Gan, B.R., Jiang, W.H. and Zhou, J.W. 2018. Physical and compaction properties of granular materials with artificial grading behind the particle size distributions. Advances in Materials Science and Engineering 2018(8093571):1-20, doi:10.1155/2018/8093571.

Cortellazzo, G., Bellò, E., Busana, S. and Favaretti, M. 2021. Experimental acceptance procedure for using cullet in the gas collection layer of MSW landfill. Indian Geotechnical Journal 51(5):877-886, doi:10.1007/s40098-020-00472-w.

Das, B.M. 2021. Principles of Geotechnical Engineering (10th ed.). Cengage Learning.

Ezersky, M.G., Legchenko, A., Eppelbaum, L. and Al-Zoubi, A. 2017. Overview of the geophysical studies in the dead sea coastal area related to evaporite karst and recent sinkhole development. International Journal of Speleology 46(2):277-302, doi:10.5038/1827-806X.46.2.2087.

Farooq, M., Park, S., Song, Y.S., Kim, J.H., Tariq, M. and Abraham, A.A. 2012. Subsurface cavity detection in a karst environment using Electrical Resistivity (ER): a case study from Yongweol-ri, South Korea. Earth Sciences Research Journal 16(1):75-82.

Figueroa-Miranda, S., Tuxpan-Vargas, J., Ramos-Leal, J.A., Hernández-Madrigal, V.M. and Villaseñor-Reyes, C.I. 2018. Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: a review. Engineering Geology 246:91-106, doi:10.1016/j.enggeo.2018.09.023.

García-Soriano, D., Quesada-Román, A. and Zamorano-Orozco, J.J. 2020. Geomorphological hazards susceptibility in high-density urban areas: a case study of Mexico City. Journal of South American Earth Sciences 102(102667):1-11, doi:10.1016/j.jsames.2020.102667.

Hassan, A.A. and Toll, D.G. 2015. Water content characteristics of mechanically compacted clay soil determined using the electrical resistivity method. ICE Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, ISBN 978-0-7277-6067-8, 793-798, doi:10.1680/ecsmge.60678.

Ikuemonisan, F.E. and Ozebo, V.C. 2020. Characterization and mapping of land subsidence based on geodetic observations in Lagos, Nigeria. Geodesy and Geodynamics 11(2):151-162, doi:10.1016/j.geog.2019.12.006.

Imran, A.M., Farida, M., Arifin, M.F., Husain, R. and Hafidz, A. 2016. Coral reef development as an indicator of seal level fluctuation: a preliminary study on Pleistocene reef in Bulukumba, South Sulawesi. Indonesian Journal on Geoscience 3(1):53-66, doi:10.17014/ijog.3.1.53-66.

Massinai, M.A. and Massinai, M.F.I. 2018. Determination hypocentre and focal mechanism earthquake of Oct 31, 2016 in Bone, South Sulawesi. Journal of Physics: Conference Series 979(012045):1-5, doi:10.1088/1742-6596/979/1/012045.

Massinai, M.A., Massinai, M.F.I., Kurniati, A. and Syamsuddin, E. 2019. Identification fault characteristic in Southern Sulawesi by Focal Mechanism. Journal of Physics: Conference Series 1363(012040):1-7, doi:10.1088/1742-6596/1363/1/012040.

Massinai, M.A., Sudradjat, A. and Lantu, L. 2014. The influence of seismic activity in South Sulawesi Area to the geomorphology of Jeneberang watershed. International Journal of Engineering and Technology 3(10):945-948.

O’Kelly, B.C. and Nogal, M. 2020. Determination of soil permeability coefficient following an updated grading entropy method. Geotechnical Research 7(1):58-70, doi:10.1680/jgere.19.00036.

Oyeyemi, K.D., Aizebeokhai, A.P., Adagunodo, T.A., Olofinnade, O.M., Sanuade, O.A. and Olaojo, A.A. 2017. Subsoil characterization using geoelectrical and geotechnical investigations: implications for foundation studies. International Journal of Civil Engineering and Technology 8(10):302-314.

Pusparini, W., Ilmi, N.N. and Sunardi, E. 2019. Determining maturity rate of hydrocarbon using sample core from geochemistry survey in Padamarang Sub-Basin, Bone Gulf, South of Sulawesi. Journal of Geological Sciences and Applied Geology 3(1):1-5.

Sari, N.D.P., Massinai, M.F.I., Hasan, A., Rahayu, D. and Nurdin, N.H. 2019. Subsurface prediction using resistivity method (case study: Bira, South Sulawesi, Indonesia). Journal of Physics: Conference Series 1341(082028):1-5, doi:10.1088/1742-6596/1341/8/082028.

Sujit, M. 2015. Assessing cohesion, friction angle and slope instability in the Shivkhola Watershed of Darjiling Himalaya. International Research Journal of Earth Sciences 3(8):1-10.

Wichtmann, T. and Triantafyllidis, T. 2013. Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well-graded quartz sands. Journal of Geotechnical and Geoenvironmental Engineering 139(1):59-72, doi:10.1061/(asce)gt.1943-5606.0000735.

Wilopo, W., Putra, D.P., Fathani, T.F., Widodo, S., Pratama, G.N.I.P., Nugroho, M.S. and Prihadi, W.R. 2022. Identification of subsidence hazard zone by integrating engineering geological mapping and electrical resistivity tomography in Gunung Kidul Karst Area, Indonesia. Journal of Degraded and Mining Lands Management 9(2):3281-3291, doi:10.15243/jdmlm.2022.092.3281.

Yavari, N., Tang, A.M., Pereira, J.-M. and Hassen, G. 2016. Effect of temperature on the shear strength of soils and the soil–structure interface. Canadian Geotechnical Journal 53(7):1186-1194, doi:10.1139/cgj-2015-0355.

Zhou, W., Beck, B.F. and Adams, A.L. 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology 42(8):922-928, doi:10.1007/s00254-002-0594-z








How to Cite

Massinai, M. A., Massinai, M. F. I., & Syamsuddin, E. (2023). Land subsidence assessment on karst based on resistivity and geotechnical parameters. Journal of Degraded and Mining Lands Management, 10(2), 4047–4059.



Research Article