Indexed By
Article Tools
Email this article (Login required)
Email the author (Login required)
About The Authors

Basa T Rumahorbo
Department of Marine Science and Fisheries, Cenderawasih University
Indonesia

Maklon Warpur
Department of Marine Science and Fisheries, Cenderawasih University
Indonesia

Baigo Hamuna
ORCID iD Department of Marine Science and Fisheries, Cenderawasih University
Indonesia

Rosye H.R. Tanjung
ORCID iD Department of Biology, Cenderawasih University
Indonesia

User
Author Guidelines

SJR Rank

SCImago Journal & Country Rank

Sinta Rank

Sinta Rank

Visitor Statistic

Analysis of shoreline changes along the coastal area of Biak Island (Biak Numfor Regency, Indonesia) using multitemporal Landsat images

Basa T Rumahorbo, Maklon Warpur, Baigo Hamuna, Rosye H.R. Tanjung
  J. Degrade. Min. Land Manage. , pp. 3861-3870  
Viewed : 102 times

Abstract



Monitoring shoreline changes is important in detecting abrasion and accretion in coastal areas. This study aimed to determine the level of shoreline change caused by abrasion and accretion and estimate the change rate. The study area covers coastal areas in ten Districts in Biak Numfor Regency (only on Biak Island). Six Landsat image datasets (1997, 2002, 2007, 2013, 2018, and 2022) were used to determine the coastline. Shoreline changes were analysed using DSAS software. The results of digitising the shoreline show a change in the length of the shoreline during the six data periods. Based on NSM and EPR for the last ten years (2013-2022), the average shoreline changes due to abrasion range from -6.65 to -13.16 m with an abrasion rate of -0.76 to -1.50 m/year. Meanwhile, the average shoreline changes due to accretion ranged from 4.64 to 8.45 m with an accretion rate of 0.53 m/year to 0.96 m/year. Changes in shoreline based on the rate of abrasion and accretion vary greatly in each district along the coastal area of Biak Numfor Regency, depending on the EPR value of each transect. Spatially, high abrasion and very high abrasion are widely distributed in Oridek, Biak Utara, Swandiwe, and Warsa Districts. Medium and high accretion were found in Yawosi, Bindifuar, and Oridek Districts. Because there has been a change in the coastline due to abrasion, planning efforts to mitigate coastal areas are very necessary. 


Keywords


abrasion; accretion; DSAS; End Point Rates; Net Shoreline Movement

Full Text:

PDF

References


Angkotasan, A.M., Nurjaya, I.W. and Natih, N.M. 2012. Shoreline change analysis of the south west coast at Ternate Island, North Molucas Province. Jurnal Teknologi Perikanan dan Kelautan 3(2):11-22, doi:10.24319/jtpk.3.11-22 (in Indonesian).

Armenio, E., Serio, F.D., Mossa, M. and Petrillo, A.F. 2019. Coastline evolution based on statistical analysis and modeling. Natural Hazards and Earth System Sciences 19(9):1937-1953, doi:10.5194/nhess-19-1937-2019.

Aryastana, P., Ardantha, I.M. and Agustini, N.K.A. 2017. Analysis of coastal line changes and erosion rate in Denpasar City and Badung Regency with spot satellite image. Jurnal Fondasi 6(2):100-111, doi:10.36055/jft.v6i2.2634 (in Indonesian).

Baig, M.R.I., Ahmad, I.A., Shahfahad, Tayyab, M. and Rahman, A. 2020. Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS 26(4):361-376, doi:10.1080/19475683.2020.1815839.

BPS (Badan Pusat Statistik) Kabupaten Biak Numfor. 2021. Biak Numfor Regency in Figures 2021. Badan Pusat Statistik Kabupaten Biak Numfor, Biak Numfor (in Indonesian).

Cendrero, A. 1989. Mapping and evaluation of coastal areas for planning. Ocean and Shoreline Management 12(5-6):427-462, doi:10.1016/0951-8312(89)90023-4.

Cohen, M.C.L. and Lara, R.J. 2003. Temporal changes of mangrove vegetation boundaries in Amazonia: Application of GIS and remote sensing techniques. Wetland Ecology Management 11:223-231, doi:10.1023/A:1025007331075.

Cui, B.-L. and Li, X.-Y. 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005). Geomorphology 127(1-2):32-40, doi:10.1016/j.geomorph.2010.12.001.

Dewi, C.S.U., Subhan, B. and Arafat, D. 2017. The diversity, density, and covering area of seagrass in Biak Island waters, Papua. Depik: Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan 6(2):122-127, doi:10.13170/depik.6.2.6227 (in Indonesian).

Dey, M., Priyaa, S. and Jena, B.K. 2021. A shoreline change detection (2012-2021) and forecasting using digital shoreline analysis system (DSAS) tool: a case study of Dahej Coast, Gulf of Khambhat, Gujarat, India. Indonesian Journal of Geography 53(2):295-309, doi:10.22146/ijg.56297.

Elnabwy, M.T., Elbeltagi, E., El Banna, M.M., Elshikh, M.M.Y., Motawa, I. and Kaloop, M.R. 2020. An approach based on Landsat images for shoreline monitoring to support integrated coastal management: a case study, Ezbet Elborg, Nile Delta, Egypt. ISPRS International Journal of Geo-Information 9:199, doi:10.3390/ijgi9040199.

Hamuna, B., Kalor, J.D. and Tablaseray, V.E. 2019. The Impact of tsunami on mangrove spatial change in eastern coastal of Biak Island, Indonesia. Journal of Ecological Engineering 20(3):1-6, doi:10.12911/22998993/95094.

Hartati, R., Pribadi, R., Astuti, R.W., Yesiana, R. and Yuni, H.I. 2016. A study of coastal security and protection in the coastal area of Tugu and Genuk Districts, Semarang City. Jurnal Kelautan Tropis 19(2):95-100, doi:10.14710/jkt.v19i2.823 (in Indonesian).

Kaly, U., Pratt, C. and Mitchell, J. 2004. The Environmental Vulnerability Index (EVI) 2004. SOPAC Technical Report 384.

Kankara, R.S., Selvan, S.C., Markose, V.J., Rajan, B. and Arockiaraj, S. 2015. Estimation of long and short term shoreline changes along Andhra Pradesh coast using remote sensing and GIS techniques. Procedia Engineering 116:855-862, doi:10.1016/j.proeng.2015.08.374.

Ko, B.C., Kim, H.H. and Nam, J.Y. 2015. Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors 15(6):13763-13777, doi:10.3390/s150613763.

Koroglu, A., Ranasinghe, R., Jiménez, J.A. and Dastgheib, A. 2019. Comparison of coastal vulnerability index applications for Barcelona Province. Ocean and Coastal Management 178:104799, doi:10.1016/j.ocecoaman.2019.05.001.

Koulibaly, C.T. and Ayoade, J.O. 2021. The application of GIS and remote sensing in a spatiotemporal analysis of coastline retreat in Rufisque, Senegal. Geomatics and Environmental Engineering 15(3):55-80, doi:10.7494/geom.2021.15.3.55.

Lubis, S.M. 2011. Coastal Management. Institut Teknologi Bandung, Indonesia (in Indonesian).

Marfai, M.A. 2014. Impact of sea level rise to coastal ecology: a case study on the northern part of Java Island, Indonesia. Quaestiones Geographicae 33(1):107-114, doi:10.2478/quageo-2014-0008.

Marfai, M.A., Almohammad, H., Dey, S., Susanto, B. and King, L. 2007. Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environmental Monitoring and Assessment 142(1-3):297-308, doi:10.1007/s10661- 007-9929-2.

Mujabar, P.K. and Chandrasekar, N. 2013. Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arabian Journal of Geosciences 6:647-666, doi:10.1007/s12517-011-0394-4.

Mutaqin, B.W. 2017. Shoreline changes analysis in Kuwaru coastal area, Yogyakarta, Indonesia: an application of the digital shoreline analysis system (DSAS). International Journal of Sustainable Development and Planning 12(7):1203-1214, doi:10.2495/SDP-V12-N7-1203-1214.

Nassar, K., Mahmod, W.E., Fath, H., Masria, A., Nadaoka, K. and Negm, A. 2019. Shoreline change detection using DSAS technique: case of North Sinai coast, Egypt. Marine Georesources & Geotechnology 37(1):81-95, doi:10.1080/ 1064119X.2018.1448912.

Nath, A., Koley, B., Saraswati, S., Bhatta, B. and Ray, B.C. 2021. Shoreline change and its impact on land use pattern and vice versa: a critical analysis in and around Digha area between 2000 and 2018 using geospatial techniques. Pertanika Journal of Science and Technology 29(1):331-348, doi:10.47836/pjst.29.1.19.

Nhan, N.T., Tung, N.X., Anh, B.T.B. and Thanh, N.X. 2018. Application of remote sensing, GIS and digital shoreline analysis system (DSAS) to assess the changes of the Red River Bank in the area from Son Tay to Gia Lam (Hanoi). Journal of Marine Science and Technology 18(3):269-277, doi:10.15625/1859-3097/18/3/11028.

Nugraha, I.N.J., Karang, I.W.G.A. and Dharma, I.G.B.S. 2017. Study of coastline change rate on the southeast coast of Bali using Landsat satellite imagery (case study of Gianyar and Klungkung Regencies). Journal of Marine and Aquatic Sciences 3(2):204-214, doi:10.24843/jmas.2017.v3.i02.204-214 (in Indonesian).

Passeri, D.L., Hagen, S.C., Medeiros, S.C., Bilskie, M.V., Alizad, K. and Wang, D. 2015. The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future 3:159-181, doi:10.1002/2015EF000298.

Pendleton, E.A., Thieler, E.R. and Williams, S.J. 2010. Importance of coastal change variables in determining vulnerability to sea- and lake-level change. Journal of Coastal Research 261:176-183, doi:10.2112/08-1102.1.

Rumkorem, O.L.Y., Kurnia, R. and Yulianda, F. 2019. Association between coral community cover with coral reef fish at east coast of Biak Island, Biak Numfor Regency. Jurnal Ilmu dan Teknologi Kelautan Tropis 11(3):615-625, doi:10.29244/jitkt.v11i3.23375 (in Indonesian).

Rumpaidus, G.A., Putra, A.M. and Widyatmaja, I.G.N. 2019. Strategy for developing tourism destinations in Biak Numfor Regency, Papua Province. Jurnal Kepariwisataan dan Hospitalitas 3(2):22-42, doi:10.24843/JKH.2019.v03.i02.p03 (in Indonesian).

Ryabchuk, D., Spiridonov, M., Zhamoida, V., Nesterova, E. and Sergeev, A., 2012. Long term and short-term coastal line changes of the Eastern Gulf of Finland. Problems of coastal erosion. Journal of Coastal Conservation 16(3):233-242, doi:10.1007/s11852-010-0105-4.

Saad, R., Gerard, J.A. and Gerard, P. 2021. Detection of the shoreline changes using DSAS technique and remote sensing: a case study of Tyre Southern Lebanon. Journal of Oceanography and Marine Research 9(11):1000004.

Setyawana, F.O., Sari, W.K. and Aliviyanti, D. 2021. Analysis of coastline change using digital shoreline analysis system in Kuala Pesisir District, Nagan Raya Regency, Aceh. Journal of Fisheries and Marine Research 5(2):368-377, doi:10.21776/ub.jfmr.2021.005.02.22 (in Indonesian).

Shuhendry, R. 2004. Coast Abrasion in Bengkulu City Coastal Territory: Analysis Cause Factor and Concept of Handling. Universitas Diponegoro, Semarang (in Indonesian).

Tablaseray, V.E., Pairin, M.R.A., Fakdawer, N. and Hamuna, B. 2018. Mapping of mangrove distribution and density in eastern coastal of Biak Island, Papua using Landsat 8 satellite imaginary. Jurnal Perikanan dan Kelautan 8(1):31-39, doi:10.33512/jpk.v8i1.3682 (in Indonesian).

Thieler, E.R. and Hammar-Klose, E.S.1999. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Atlantic Coast. U.S. Geological Survey Open-File Report 99-593. United States Geological Survey, Woods Hole, Massachusetts.

Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L. and Ergul, A. 2009. Digital Shoreline Analysis System (DSAS) version 4.0, An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008-1278.

Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14):10-12, doi:10.1080/01431160600589179.

Yulianto, F., Suwarsono, Maulana, T. and Khomarudin, M.R. 2019. The dynamics of shoreline change analysis based on the integration of remote sensing and geographic information system (GIS) techniques in Pekalongan coastal area, Central Java, Indonesia. Journal of Degraded and Mining Lands Management 6(3):1789-1802, doi:10.15243/jdmlm. 2019.063.1789.

Zonkouan, B.R.V., Bachri, I., Beda, A.H.Z. and N’Guessan, K.A.M. 2022. Monitoring spatial and temporal scales of shoreline changes in Lahou-Kpanda (Southern Ivory Coast) using Landsat data series (TM, ETM+ and OLI). Geomatics and Environmental Engineering 16(1):145-158, doi:10.7494/geom.2022.16.1.145.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Journal of Degraded and Mining Lands Management

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed By