Indexed By
SJR Rank

SCImago Journal & Country Rank

Article Tools
Email this article (Login required)
Email the author (Login required)
About The Authors

Yekti Sri Rahayu
Universitas Wisnuwardhana

Prodi Agroteknologi, Fakultas Pertanian Universitas Wisnuwardhana

Moch. Dawam Maghfoer
2Faculty of Agriculture, Brawijaya University, Jl. Veteran No. 1 Malang 65145

Tatik Wardiyati
2Faculty of Agriculture, Brawijaya University, Jl. Veteran No. 1 Malang 65145

Author Guidelines

Visitor Statistic

The potential of intercropping of Crotalaria juncea on the reduction of Pb accumulation in Brassica rapa and Phaseolus vulgaris grown on Pb-contaminated soil

Yekti Sri Rahayu, Moch. Dawam Maghfoer, Tatik Wardiyati
  J. Degrade. Min. Land Manage. , pp. 3745-3752  
Viewed : 136 times


Many factors cause increasing Pb contamination in soils, including intensive crop production, motor vehicle exhaust gas around agricultural land areas, or irrigation mixed with household. An effort is needed to minimize Pb contamination in soils. This experiment aimed to examine the potential of Crotalaria juncea L. intercropped for minimizing the accumulation of Pb in vegetable crops grown intensively using agrochemicals. The treatments tested were monoculture of Brassica rapa, monoculture of Phaseolus vulgaris, monoculture of C.juncea, intercropping C. juncea with B.rapa, and intercropping C. juncea  with P. vulgaris. Results of the study showed that planting of C. juncea reduced the total dry weight of B.rapa by 33.47% and increased the total dry weight of P. vulgaris by 17.41% compared to monoculture. Intercropping of B rapa or P. vulgaris with C. juncea reduced the total Pb concentration of B. rapa by 45.64%, and that of P. vulgaris by 16.22%. Planting of C. juncea reduced the Pb concentration in B. rapa by 21.23% (Pb 0.89 mg kg-1) and that in P. vulgaris by 76.03% (Pb 0.93 mg    kg-1). Monoculture planting of C.juncea and intercropping of C. juncea with B. rapa or P. vulgaris reduced the concentration of available Pb and total Pb in the soil to not detected value, compared to monoculture planting of B. rapa and P. vulgaris.


agrochemicals; Crotalaria juncea; intercropping; Pb; vegetables

Full Text:



Agricultural Research and Development Agency. 2012. Technical Guidelines for Chemical Analysis of Soil, Plant, Water and Fertilizer. Ministry of Agriculture of the Republic of Indonesia (in Indonesian).

Ali, H., Khan, E. and Ilahi, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019:1-14, doi:10.1155/2019/6730305.

Ametepey, S.T., Cobbina, S.J., Akpabey, F.J., Duwiejuah, A.B. and Abuntori, Z.N. 2018. Health risk assessment and heavy metal contamination levels in vegetables from tamale metropolis, Ghana. International Journal of Food Contamination 5(1), doi:10.1186/s40550-018-0067-0.

An, L., Pan, Y., Wang, Z. and Zhu, C. 2011. Heavy metal absorption status of five plant species in monoculture and intercropping. Plant and Soil 345(1):237-245, doi:10.1007/s11104-011-0775-1.

Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B. and Mittal, N. 2008. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry 111(4):811-815, doi:10.1016/j.foodchem.2008.04.049.

Azimi, A., Azari, A., Rezakazemi, M. and Ansarpour, M. 2017. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews 4(1):37-59, doi:10.1002/cben.201600010.

Balkhair, K.S. and Ashraf, M.A. 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences 23(1):S32-S44, doi:10.1016/j.sjbs.2015.09.023.

Bi, C., Zhou, Y., Chen, Z., Jia, J. and Bao, X. 2018. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Science of the Total Environment 619-620:1349-1357, doi:10.1016/j.scitotenv.2017.11.177.

Bi, X., Feng, X., Yang, Y., Li, X., Shin, G.P.Y., Li, F., Qiu, G., Li, G., Li, T. and Fu, Z. 2009. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution 157(3):834-839, doi:10.1016/j.envpol.2008.11.013.

Bray, R.H. and Kurtz, L.T. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Science 59:39-45.

Chen, Y., Li, X. and Shen, Z. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57(3):187-196, doi:10.1016/j.chemosphere.2004.05.044.

De Temmerman, L., Waegeneers, N., Claeys, N. and Roekens, E. 2009. Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: An important step in terrestrial food chain analysis. Environmental Pollution 157(4):1337-1341, doi:10.1016/j.envpol.2008.11.035.

Ghosh, M. and Singh, S.P. 2005. A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution 133(2):365-371, doi:10.1016/j.envpol.2004.05.015.

Gong, X., Liu, C., Li, J., Luo, Y., Yang, Q., Zhang, W., Yang, P. and Feng, B. 2019. Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil and Tillage Research 195(April):104355, doi:10.1016/j.still.2019.104355.

Järup, L. 2003. Hazards of heavy metal contamination. British Medical Bulletin 68:167-182, doi:10.1093/bmb/ldg032.

Karamina, H., Wardiyati, T. and Maghfoer, D. 2014. The effect of phytoremediation of heavy metal by orok-Orok (Crotalaria sp.) on the growth of aloe vera. IOSR Journal of Agriculture and Veterinary Science 7(7):08-15, doi:10.9790/2380-07730815.

Khan, M.U., Malik, R.N. and Muhammad, S. 2013. Human health risk from heavy metals via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 93(10):2230-2238, doi:10.1016/j.chemosphere.2013.07.067.

Lal, B., Rana, K.S., Rana, D.S., Shivay, Y.S., Sharma, D.K., Meena, B.P. and Gautam, P. 2019. Biomass, yield, quality and moisture use of Brassica carinata as influenced by intercropping with chickpea under semiarid tropics. Journal of the Saudi Society of Agricultural Sciences 18(1):61-71, doi:10.1016/j.jssas.2017.01.001.

Li, L., Zhang, L. and Zhang, F. 2013. Crop mixtures and the mechanisms of overyielding. Encyclopedia of Biodiversity: Second Edition 2: 82-395, doi:10.1016/B978-0-12-384719-5.00363-4.

Li, Q., Wu, L.K., Chen, J., Khan, M.A., Luo, X.M. and Lin, W.X. 2016. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. Journal of Integrative Agriculture 15(1):101-110, doi:10.1016/S2095-3119(15)61089-9.

Li, Q.S., Cai, S.S., Mo, C.H., Chu, B., Peng, L.H. and Yang, F.B. 2010. Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicology and Environmental Safety 73(1):84-88, doi:10.1016/j.ecoenv.2009.09.002.

Li, Q.S., Chen, Y., Fu, H.B., Cui, Z.H., Shi, L., Wang, L.L. and Liu, Z.F. 2012. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. Journal of Hazardous Materials 227-228:148-154, doi:10.1016/j.jhazmat.2012.05.023.

Liu, L., Hu, L., Tang, J., Li, Y., Zhang, Q. and Chen, X. 2012. Food safety assessment of planting patterns of four vegetable-type crops grown in soil contaminated by electronic waste activities. Journal of Environmental Management 93(1):22-30, doi:10.1016/j.jenvman.2011.08.021.

Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F. and Brookes, P.C. 2013. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Science of the Total Environment 463-464:530-540, doi:10.1016/j.scitotenv.2013.06.064.

Liu, Y., Ye, F., Zeng, G., Fan, T., Meng, L. and Yuan, H. 2007. Effects of added Cd on Cd uptake by oilseed rape and pai-tsai co-cropping. Transactions of Nonferrous Metals Society of China (English Edition) 17(4):846-852, doi:10.1016/S1003-6326(07)60186-1.

Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G. and Li, X. 2011. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. Journal of Hazardous Materials 186(1):481-490, doi:10.1016/j.jhazmat.2010.11.024.

Luo, L., Ma, Y., Zhang, S., Wei, D. and Zhu, Y.G. 2009. An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management 90(8):2524-2530, doi:10.1016/j.jenvman.2009.01.011.

Malayeri, B.E., Chehregani, A., Yousefi, N. and Lorestani, B. 2008. Identification of the hyperaccumulator plants in copper and iron mine in Iran. Pakistan Journal of Biological Sciences 11(3):490-492, doi:10.3923/pjbs.2008.490.492.

McGrath, S.P., Zhao, F.J. and Lombi, E. 2002. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Interactions in the Root Environment: An Integrated Approach 207–214: doi:10.1007/978-94-010-0566-1_20.

Mosjidis, J.A. and Wang, M.L. 2011. Crotalaria. In: Kole, C. (ed.), Wild Crop Relatives: Genomic and Breeding Resources-Industrial Crops (pp. 29–61), doi: 10.1007/978-3-642-21102-7.

Rahayu, Y.S., Wardiyati, T. and Maghfoer, M.D. 2020. Accumulation of Pb in Chinese cabbage (Brassica rapa) and bean (Phaseolus vulgaris) from the use of fertilizer and pesticide. Journal of Degraded and Mining Lands Management 7(3):2139-2148, doi:10.15243/jdmlm.2020.073.2139.

Rehman, Z.U., Khan, S., Brusseau, M.L. and Shah, M.T. 2017. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere 168:1589-1596, doi:10.1016/j.chemosphere.2016.11.152.

Sheoran, V., Sheoran, A.S. and Poonia, P. 2011. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Critical Reviews in Environmental Science and Technology 41(2):168-214, doi:10.1080/10643380902718418.

Tang, Y.T., Deng, T.H.B., Wu, Q.H., Wang, S.Z., Qiu, R.L., Wei, Z.B., Guo, X.F., Wu, Q.T., Lei, M., Chen, T.B., Echevarria, G., Sterckeman, T., Simonot, M.O. and Morel, J.L. 2012. Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22(4):470-488, doi:10.1016/S1002-0160(12)60032-0.

Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37:29-38, doi:10.1097/00010694-193401000-00003.

Wan, X., Lei, M., Chen, T. and Yang, J. 2017. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Science of the Total Environment 579:1467-1475, doi:10.1016/j.scitotenv.2016.11.148.

Wei, S., Zhou, Q. and Mathews, S. 2008. A newly found cadmium accumulator-Taraxacum mongolicum. Journal of Hazardous Materials 159(2-3):544-547, doi:10.1016/j.jhazmat.2008.02.052.

Wei, Z.B., Guo, X.F., Wu, Q.T., Long, X.X. and Penn, C.J. 2011. Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk. International Journal of Phytoremediation 13(7):717-729, doi:10.1080/15226514.2010.525554.

Wu, Q.T., Wei, Z.B. and Ouyang, Y. 2007. Phytoextraction of metal-contaminated soil by Sedum alfredii H: Effects of chelator and co-planting. Water, Air, and Soil Pollution 180(1-4):131-139, doi:10.1007/s11270-006-9256-1.

Xu, P., Sun, C.X., Ye, X.Z., Xiao, W.D., Zhang, Q. and Wang, Q. 2016. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety 132:94-100, doi:10.1016/j.ecoenv.2016.05.031.

Yang, Y., Zhou, X., Tie, B., Peng, L., Li, H., Wang, K. and Zeng, Q. 2017. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188(June 2014):148-156, doi:10.1016/j.chemosphere.2017.08.140.

Zhuang, P., McBride, M. B., Xia, H., Li, N. and Li, Z. 2009. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment 407(5): 1551-1561, doi:10.1016/j.scitotenv.2008.10.061.


  • There are currently no refbacks.

Copyright (c) 2022 Journal of Degraded and Mining Lands Management

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed By