Indexed By
Article Tools
Email this article (Login required)
Email the author (Login required)
About The Authors

Souad Tabti
Djilali Liabès University
Algeria

Fatima Zohra Bendimered-Mouri
Djilali Liabès University
Algeria

User
Author Guidelines

SJR Rank

SCImago Journal & Country Rank

Sinta Rank

Sinta Rank

Visitor Statistic

Mycorrhizal status of Plantago coronopus L. in relation to edaphic parameters in a coastal dune of Oran

Souad Tabti, Fatima Zohra Bendimered-Mouri
  J. Degrade. Min. Land Manage. , pp. 3605-3612  
Viewed : 379 times

Abstract


La présente étude a été menée dans le but de contribuer à une meilleure compréhension de l'adaptation des psammo-halophytes à leurs environnements hostiles à travers la détermination de leur statut mycorhizien. Il s'agissait de l'évaluation du statut mycorhizien de Plantago coronopus L. en relation avec les paramètres édaphiques de sa rhizosphère dans une dune du littoral oranais. Des échantillons de sol rhizosphérique et de racines ont été prélevés sur trois sites situés sur les dunes de Bomo-plage, à l'ouest d'Oran. Les paramètres de colonisation mycorhizienne de la plante et les paramètres physico-chimiques du substrat ont été déterminés. Les résultats ont montré que le substrat avait une texture sablo-limoneuse, il était légèrement salin, très pauvre en eau et en nutriments, avec une forte charge de calcaire total et une faible teneur en carbone organique et en azote total. Les racines ont été colonisées par des champignons de type mycorhizes arbusculaires avec une fréquence moyenne élevée (61,34%). Les résultats de l'analyse en composantes principales ont révélé que les paramètres mycorhiziens étaient positivement corrélés avec la salinité du sol, le carbone organique et la matière organique, l'azote total et le limon. Cependant, la corrélation entre les paramètres mycorhiziens et le pH,


Keywords


arbuscular mycorrhizal colonization, coastal dune, edaphic parameters, Plantago coronopus L.

Full Text:

PDF

References


Alguacil, M.M., Torres, M.P., Montesinos-Navarro, A. and Roldán, A. 2016. Soil characteristics driving arbuscular mycorrhizal fungal communities in semiarid mediterranean soils. Applied and Environmental Microbiology 82:3348‒3356, doi: 10.1128/AEM.03982-15.

Becerra, A., Zak, M.R., Horton, T.R. and Micolini J. 2005. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15:525-531, doi:10.1007 /s00572-005-0360-7.

Bencherif, K., Boutekrabt, A., Fontaine, J., Laruelle, F., Dalpè, Y. and Lounès-Hadj Sahraoui, A. 2015. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulate Vahll rhizosphere in arid and semi-arid Algerian areas. Science of the Total Environment 533:488‒494, doi: 10.1016/j.scitotenv.2015.07.007.

Birhane, E., Aregawi, K. and Giday, K. 2017. Changes in arbuscular mycorrhiza fungi spore density and root colonization of woody plants in response to exclosure age and slope position in the highlands of Tigray, Northern Ethiopia. Journal of Arid Environments 142:1‒10, doi: 10.1016/j.jaridenv.2017.03.002.

Bremner, J.M. 1996. Nitrogen Total. In: Sparks, D.L. (eds), Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series Madison, Wisconsin., pp 1085‒1121.

Brundrett, M.C. and Tedersoo, L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220:1108‒1115, doi: 10.1111/nph.14976.

Carrenho, R., Trufem, S.F.B., Bononi, V.L.R. and Silva, E.S. 2007. The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Botanica Brasilica 21:723‒730, doi: 10.1590/S0102-33062007000300018.

Cheng, Y., Ishimoto, K., Kuriyama Y., Osaki, M. and Ezawa, T. 2013. Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant Soil 365:397‒407, doi: 10.1007/s11104-012-1398-x.

Corrêa, A., Cruz, C. and Ferrol, N. 2015. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25:499‒515, doi: 10.1007/s00572-015-0627-6.

Cui, X., Hu, J., Wang, J., Yang, J. and Lin, X. 2016. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by illumina sequencing. Applied Soil Ecology 98:140‒149, doi: 10.1016/j.apsoil.2015.10.008.

Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V. and Svistoonoff, S. 2020. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 12:370, doi: 10.3390/d12100370.

Dodd, J.C., Dougall, T.A., Clapp, J.P. and Jeffries, P. 2002. The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK-the reclamation platform created during the building of the Channel tunnel between France and UK. Biodiversity and Conservation 11:39‒58, doi:10.1023/A:1014062311463.

Drouineau, G. 1942. Dosage rapide du calcaire actif du sol: nouvelles données sur la séparation et la nature des fractions calcaires. Annales Agronomiques 12: 441‒450.

Estrada, B., Beltrán-Hermoso, M., Palenzuela, J., Iwase, K., Ruiz-Lozano, J.M., Barea, J.M. and Oehl, F. 2013. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. Journal of Arid Environments 97:170‒175, doi: 10.1016/j.jaridenv.2013.05.019.

Gee, G. and Or, D. 2002. Particle size analysis. In: Dane, J.H. and Topp, G.C. (eds), Methods of soil analysis. Part 4. Physical methods. SSSA Book Series Madison, Wisconsin, pp 255‒293.

Gilbert, M., Pammenter, N. and Ripley, B. 2008. The growth responses of coastal dune species are determined by nutrient limitation and sand burial. Oecologia 156:169‒178, doi: 10.1007/s00442-008-0968-3.

Hajiboland, R., Dashtebani, F. and Aliasgharzad, N. 2015. Physiological responses of halophytic C4 grass, Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica 53:572‒584, doi: 10.1007/s11099-015-0131-4.

Hilderbrandt, U., Janetta, K., Ouziad, F., Renne, B., Nawrath, K. and Bothe, H. 2001. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175‒183, doi:10.1007/s005720000074.

Jakobsen I., Smith, S.E. and Smith, F.A. 2003. Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition. In: van der Heijden, M.G.A. and Sanders, I.R. (eds), Mycorrhizal Ecology. Ecological Studies (Analysis and Synthesis) 157. Berlin, Heidelberg, Springer, doi: 10.1007/978-3-540-38364-2_3.

Koyro, H.W. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environental and Experimental Botany 56:136‒146, doi: 10.1016/j.envexpbot.2005.02.001.

Koziol, L. and Bever, J.D. 2016. The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology 54:1301‒1309, doi:10.1111/1365-2664.12843.

Labidi, S., Ben Jeddi, F., Tisserant, B., Debiane, D., Rezgui, S., Grandmougin-Ferjani, A. and Lounès-Hadj Sahraoui, A. 2012. Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22:337‒345, doi: 10.1007/s00572-011-0405-z.

Landwehr, M., Hilderbrandt, U., Wilde, P., Nawrath, K., Tóth, T., Biró, B. and Bothe, H. 2002. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199‒211, doi: 10.1007/s00572-011-0405-z.

Lekberg, Y., Koide, R.T., Rohr, J.R., Aldrich-Wolfe, L. and Morton, J.B. 2007. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology 95:95‒105, doi: 10.1111/j.1365-2745.2006.01193.x.

Liu, H., Wang, Y. and Tang, M. 2016. Arbuscular mycorrhizal fungi diversity associated with two halophytes Lycium barbarum L. and Elaeagnus angustifolia L. in Ningxia, China. Archives of Agronomy and Soil Science 63:796-806, doi: 10.1080/03650340.2016.1235783.

Mason. E. 1928. Note on the presence of mycorrhiza in the roots of salt marsh plants. New Phytologist 27:193‒195.

Mohammad, M.J., Hamad, S.R.and Malkawi, H.I. 2003. Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. Journal of Arid Environments 53:409‒417, doi: 10.1006/jare.2002.1046.

Nelson, D.W. and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (eds), Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series Madison, Wisconsin, pp 961‒1010.

Oliveira, R.S., Vosátka, M., Dodd, J.C. and Castro, P.M.L. 2005. Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23‒31, doi: 10.1007/s00572-005-0010-0.

Pan, Y., Zhang, H., Li, X. And Xie, Y. 2016. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China. Scientific Reports 6:36300, doi: 10.1038/srep36300.

Panwar, J and Tarafdar, J.C. 2006. Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.) Korth. in Thar Desert. Applied Soil Ecology, 34:200‒208, doi: 10.1016/j.apsoil.2006.02.001

Pereira, C.G., Custodio, L., Rodrigues, M.J., Neng, N.R., Nogueira, J.M.F., Carlier, J., Costa, M.C., Varela, J. and Barreira, L. 2016. Profiling of antioxidant potential and phyto-constituents of Plantago coronopus. Brazilian Journal of Biology 77:632‒641, doi: 10.1590/1519-6984.02416.

Phillips, J.M. and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158‒161.

Powell, J.R. and Rillig, M.C.2018. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist 220:1059‒1075, doi: 10.1111/nph.15119.

Qiu, L., Bi, Y., Jiang, B., Wang, Z., Zhang, Y. and Zhakypbek, Y. 2019. Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. Journal of Arid Land 11:135‒147, doi: 10.1007/s40333-018-0019-9.

Rich, M.K., Nouri, E., Courty, P.E. and Reinhardt, D. 2017. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Trends in Plant Science 22:652‒660, doi:10.1016/j.tplants.2017.05.008.

Saxena, B., Shukla, K. and Giri, B. 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Salt Stress in Plants. In: Wu, Q.S. (eds), Arbuscular Mycorrhizas and Stress Tolerance of Plants. Singapore, Springer, pp. 67‒97, doi: 10.1007/978-981-10-4115-0_4.

Schmidt, D. and Maslo, S.A. 2020. Continuing trend: Plantago coronopus spreads also along the roads in Bosnia and Herzegovina. Phytologia Balcanica 26:479-483.

Sidhoum, W. and Fortas, Z. 2018. Growth and mycorrhizal responses to cadmium stress in some halophytic plants. Soil and Environment 37:169-177.

Silva-Flores, P., Bueno, C.G., Neira, J. and Palfner, G. 2019. Factors Affecting Arbuscular Mycorrhizal Fungi Spore Density in the Chilean Mediterranean-Type Ecosystem. Journal of soil science and plant nutrition 19:42‒50, doi: 10.1007/s42729-018-0004-6.

Sims, J.T. 2000. Soil test phosphorus: Olsen P. In: Pierzynski, G.M. (eds), Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Southern Cooperative Series Bull Kansas State University, Manhattan, pp 20‒21.

Smekens, M.J. and Van Tienderen, P.H. 2001. Genetic variation and plasticity of Plantago coronopus under saline conditions. Acta Oecologica 22:187‒200, doi: 10.1016/s1146-609x(01)01120-1.

Strullu‐Derrien, C., Selosse, M.A., Kenrick, P. and Martin, F.M. 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist 220:1012‒1030, doi: 10.1111/nph.15076.

Tabti, S. and Bendimered-Mouri, F.Z. 2022. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Plantago coronopus in Northwestern Algerian coast. Journal of Degraded and Mining Lands Management 9:3397‒3404, doi: 10.15243/jdmlm.2022.092.3397.

Trouvelot, A., Kough, J. and Gianinazzi-Pearson, V. 1986. Measuring the rate of VA mycorrhization of root systems. Research methods for estimating having a functional significance. In: GianinazziPearson, V. and Gianinazzi, S. (eds), 1st European Symposium on Mycorrhizae: Physiological and Genetical Aspects of Mycorrhizae. Dijón INRA, Paris, pp 217‒222.

Wezel, A., Rajot, J.L. and Herbrig, C. 2000. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger.Journal of Arid Environments 44:383‒398, doi: 10.1006/jare.1999.0609.

Zarei, M., Saleh-Rastin, N., Jouzani, G.S., Savaghebi, G. and Buscot, F. 2008. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Journal of Soil Biology 44, 381‒391, doi: 10.1016/j.ejsobi.2008.06.004.

Zhang, H.S., Zhou, M.X., Zai, X.M., Zhao, F.G. and Qin, P. 2020. Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China. Scientific Reports 10:9781, doi: 10.1038/s41598-020-66976-w.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Journal of Degraded and Mining Lands Management

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed By