Do natural landscapes contribute to reducing Land Surface Temperature (LST)? A case study from Muthurajawela wetland, Sri Lanka




climate regulation, LST, LULC, Muthurajawela, wetland


Microclimate regulation is one of the most significant ecosystem services provided by wetlands. The present study attempted to investigate the cooling effect provided by Muthurajawela, a coastal Ramsar wetland using Remote Sensing and GIS.  The variation of Land Surface Temperatures (LST) over different land use categories of natural (water bodies, marsh, thick vegetation, grassland) and anthropogenic (built-up areas, coconut cultivations and bare lands) areas in 2015 and 2020. Parameters including Satellite Brightness Temperature, Normalized Difference Vegetation Index, Proportion of Vegetation and Land Surface Emissivity were calculated along eight transects starting from the center of the water body and extending up to 5 km from the boundary of the wetland. The results revealed that LST over areas under natural land cover (2015 - mean 25.040C, 2020 - mean 23.360C) were significantly lower than that of areas under anthropogenic influence (2015 - mean 26.520C and 2020 - mean 26.220C). The lowest increase of LST was over the water body and the highest was over the built-up areas indicating the buffering capacity of wetlands. As air temperatures are highly linked to LST, our findings suggest that wetlands contribute to lower atmospheric temperature and offer cooling effects during dry months. Acknowledging the importance of wetlands in reducing temperature, at least in a local scale, justifies the need of conserving these ecosystems, as seeking mitigatory measures for climate change driven frequent heating effects is challenging.


Alahacoon, N., Matheswaran, K., Pani, P. and Amarnath, G. 2018. A decadal historical satellite data and rainfall trend analysis (2001–2016) for flood hazard mapping in Sri Lanka. Remote Sensing 10(3): 448, doi: 10.3390/rs10030448.

Alberti, M. and Marzluff, J. M. 2004. Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions. Urban Ecosystems 7(3): 241-265, doi:10.1023/B:UECO.0000044038.90173.c6.

Athukorala, D., Estoque, R. C., Murayama, Y. and Matsushita, B. 2021. Impacts of urbanization on the Muthurajawela marsh and Negombo lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sensing 13(2): 316, doi:10.3390/rs13020316.

Bambaradeniya, C. N., Ekanayake, S. P., Kekulandala, L. D. C. B., Samarawickrama, V. A. P., Ratnayake, N. D. and Fernando, R. H. S. S. 2002. An assessment of the status of biodiversity in the Muthurajawela wetland sanctuary. Occasional Papers of IUCN Sri Lanka 3: 48.

Biggs, J., von Fumetti, S. and Kelly-Quinn, M. 2016. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1):3-39. doi:10.1007/s10750-016-3007-0.

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing,65(1): 2-16, doi: 10.1016/j.isprsjprs.2009.06.004.

Cao, H., Liu, J., Chen, J., Gao, J., Wang, G. and Zhang, W. 2019. Spatiotemporal patterns of urban land use change in typical cities in the greater Mekong subregion (GMS). Remote sensing 11(7): 801, doi: 10.3390/rs11070801.

Chang, C. R., Li, M. H. and Chang, S. D. 2007. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning 80(4): 386-395, doi:10.1016/j.landurbplan.2006.09.005.

Clarkson, B. R., Ausseil, A. G. E. and Gerbeaux, P. 2013. Wetland ecosystem services. Ecosystem services in New Zealand: Conditions and Trends. Manaaki Whenua Press, Lincoln, 192-202.

Dahanayaka, D. D. G. L., Tonooka, H., Wijeyaratne, M. J. S., Minato, A. and Ozawa, S. 2013. Two decadal trends of surface chlorophyll-aconcentrations in tropical lagoon environments in Sri Lanka using satellite and in-situ data. Asian Journal of Geoinformatics 13(3):1-16.

Dissanayake, C. B., Senaratne, A. and Gunatilaka, A. L. 1982. Organic geochemical studies of the Muthurajawela peat deposit of Sri Lanka. Organic Geochemistry 4(1):19-26, doi:10.1016/0146-6380(82)90004-3.

Dissanayake, D. M. S. L. B., Morimoto, T., Murayama, Y. and Ranagalage, M. 2019. Impact of landscape structure on the variation of land surface temperature in sub-saharan region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability11(8):2257, doi: 10.3390/su11082257.

Egresi, I., Prakash, S. L., Maduraperruma, B., Withanage, A., Weerasingha, A., Dezsi, Ş. and Răcăşan, B. S. (2021). What Affects Support for Wetland Tourism? A Case Study from Sri Lanka. Sustainability 13(16): 8802, doi: 10.3390/su13168802.

Estoque, R. C. and Murayama, Y. 2016. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landscape Ecology 31(7): 1481–1507. doi:10.1007/s10980-016-0341-6.

Estoque, R. C., Murayama, Y. and Myint, S. W. 2017. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment 577: 349-359, doi: 10.1016/j.scitotenv.2016.10.195.

Expressway Operation Maintenance and Management Division Road Development Authority-Sri Lanka. Available online: (accessed on 5 May 2020).

Fils, S. C. N., Mimba, M. E., Dzana, J. G., Etouna, J., Mounoumeck, P. V. and Hakdaoui, M. 2018. TM/ETM+/LDCM Images for studying land surface temperature (LST) interplay with impervious surfaces changes over time within the Douala Metropolis, Cameroon. Journal of the Indian Society of Remote Sensing 46(9):1-13, doi:10.1007/s12524-017-0677-7.

Gren, I.-M., Folke, C., Turner, K. and Batemen, I. 1994. Primary and secondary values of wetland ecosystems. Environmental & Resource Economics 4(1):55–74. doi:10.1007/bf00691932

Haines-Young, R. and Potschin, M. 2013. The Common International Classification of Ecosystem Services. Consultation on Version 4, August-December 2012. Report to the European Environment Agency, Contract No EEA/IEA/09/003.

Inostroza, L. 2014. Open Spaces and Urban Ecosystem Services. Cooling Effect towards Urban Planning in South American Cities. TeMA-Journal of Land Use, Mobility and Environment. Special Issue, June 2014, Eighth International Conference INPUT - Naples, 4-6 June 2014.

Jesus, J. and Santana, I. 2017. Estimation of land surface temperature in Caatinga area using Landsat 8 data. Journal of Hyperspectral Remote Sensing 7(3):150-157, doi: 10.29150/jhrs.v7.3.p150-157.

Khanh, P. T. and Subasinghe, S. M. C. U. P. 2018. Identificaion of vegetation change of Muthurajawela Wetland in Sri Lanka from 1992 to 2015 by using GIS-remote sensing. Journal of the Indian Society of Remote Sensing 46(1):131-143.

Kong, F., Sun, C., Liu, F., Yin, H., Jiang, F., Pu, Y., Cavan, G., Skelhom, C., Middel, A. and Dronova, I. 2016. Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy 183: 1428-1440, doi:10.1016/j.apenergy.2016.09.070.

Li, T.H., Li, W.K. and Qian, Z.H., 2010. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecological Economics 69(7):1427–1435, doi: 10.1016/j.ecolecon.2008.05.018.

McInnes, R. J. and Everard, M. 2017. Rapid Assessment of Wetland Ecosystem Services (RAWES): An example from Colombo, Sri Lanka. Ecosystem Services 25:89–105, doi:10.1016/j.ecoser.2017.03.024

McPhearson, T., Andersson, E., Elmqvist, T. and Frantzeskaki, N. 2015. Resilience of and through urban ecosystem services. Ecosystem Services 12:152-156, doi:10.1016/j.ecoser.2014.07.012.

Nath, B., Ni-Meister, W. and Choudhury, R. 2021. Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Groundwater for Sustainable Development 12: 100500, doi: 10.1016/j.gsd.2020.100500.

Ntshane, B. C. and Gambiza, J. 2016. Habitat assessment for ecosystem services in South Africa. International Journal of Biodiversity Science, Ecosystem Services & Management 12(4): 242-254, doi: 10.1080/21513732.2016.1217935.

Ogashawara, I. and Bastos, V. D. S. B. 2012. A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sensing 4(11):3596-3618, doi:10.3390/rs4113596.

Oluseyi, I. O., Fanan, U. and Magaji, J. Y. 2009. An evaluation of the effect of land use/cover change on the surface temperature of Lokoja town, Nigeria. African Journal of Environmental Science and Technology 3(3): 086-090.

Orimoloye, I. R., Kalumba, A. M., Mazinyo, S. P. and Nel, W. 2020. Geospatial analysis of wetland dynamics: wetland depletion and biodiversity conservation of Isimangaliso Wetland, South Africa. Journal of King Saud University-Science 32(1):90-96, doi: 10.1016/j.jksus.2018.03.004.

Pal, S. and Ziaul, S. K. 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science 20(1):125-145, doi: 0.1016/j.ejrs.2016.11.003.

Rajendran, P. and Mani, K. 2015. Estimation of spatial variability of land surface temperature using Landsat 8 imagery. International Journal of Engineering and Science 11(4):19-23.

Ranagalage, M., Wang, R., Gunarathna, M. H. J. P., Dissanayake, D. M. S. L. B., Murayama, Y. and Simwanda, M. 2019. Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sensing 11(15):1743, doi:10.3390/rs11151743.

Reddy, S. N. and Manikiam, B. 2017. Land surface temperature retrieval from LANDSAT data using emissivity estimation. International Journal of Applied Engineering Research 12(20):9679-9687.

Road Development Authority – Sri Lanka (n.d). National Road Master Plan 2018 - 2027,

Rongali, G., Keshari, A. K., Gosain, A. K. and Khosa, R. 2018. A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: a case study of the Beas River Basin, India. Pertanika Journal of Science & Technology 26(2): 829-840.

Rozenstein, O. and Karnieli, A. (2011) Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Applied Geography 31(2):533-544, doi:10.1016/j.apgeog.2010.11.006.

Säumel, I., Weber, F. and Kowarik, I. 2016. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environmental Science & Policy 62:24-33, doi: 10.1016/j.envsci.2015.11.012.

Scholz, T., Hof, A. and Schmitt, T. 2018. Cooling effects and regulating ecosystem services provided by urban trees—novel analysis approaches using urban tree cadastre data. Sustainability 10(3): 712, doi: 10.3390/su10030712.

Sekertekin, A. and Bonafoni, S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing 12(2): 294, doi:10.3390/rs12020294.

Sobrino, J.A., Raissouni, N. and Li, Z.L. 2001. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment 75(2): 256-266.

Soh, M.C., Mitchell, N.J., Ridley, A.R., Butler, C.W., Puan, C.L. and Peh, K. S.H. 2019. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: a systematic map for identifying future research priorities. Frontiers in Forests and Global Change 2:83, doi:10.3389/ffgc.2019.00083.

Sun, R., Chen, A., Chen, L., and Lü, Y. 2012. Cooling effects of wetlands in an urban region: The case of Beijing. Ecological Indicator, 20: 57-64.

Suresh, S., Ajay, S. V. and Mani, K. 2016. Estimation of land surface temperature of high range mountain landscape of Devikulam Taluk using Landsat 8 data. International Journal of Research in Engineering and Technology 5(1): 2321-7308, doi: 10.15623/IJRET.2016.0501017.

Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M. and Kieu, H. V. 2017. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing 124:119-132, doi: 10.1016/j.isprsjprs.2017.01.001.

Weng, Q., Liu, H., L and D. 2007. Assessing the effect of land use and land cover patterns on thermal conditions using landscape metrics in City of Indianapolis, United States. Urban Ecosystems 10(2):203-219, doi: 10.1007/s11252-007-0020-0.

Wijerathne V.P.I.S, Manawadu. L. and Ranasinghe, P. 2018. A Study of Land Surface Temperature Variation in Selected Urban Cities in Sri Lanka. International Journal of Scientific and Research Publications 8(9), doi10.29322/IJSRP.8.10.2018.p8251.

Yagoub, M. M. and Kolan, G. R. 2006. Monitoring coastal zone land use and land cover changes of Abu Dhabi using remote sensing. Journal of the Indian Society of Remote Sensing 34(1):57-68.

Zimar, A. M. Z., Nasvi, M. C. M., and Jayakody, S. (2020). Geotechnical Characterization of Peats in Muthurajawela Region in the Western Coast of Sri Lanka. Geotechnical and Geological Engineering 38(6):6679-6693.








How to Cite

Dahanayake, H., Wickramasinghe, D., & Dahanayaka, D. (2022). Do natural landscapes contribute to reducing Land Surface Temperature (LST)? A case study from Muthurajawela wetland, Sri Lanka. Journal of Degraded and Mining Lands Management, 9(2), 3329–3339.



Research Article