

Akane, I., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, and Sato, T. 2021. Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass balance approach. Resource Geology 71(3):255-282, doi:10.1111/rge.12266.
Alexandre-Kwaterczak, U. and Helios-Rybicka, E. 2009. Contaminated sediments as potential source of Zn, Pb and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland. Journal of Soils and Sediments 9(1):13-22, doi:10.1007/s11368-008-0051-z.
Dublet, G., Juillot, F., Brest, J., Noel, V., Fritsch, E., Proux, O., Olivi, L., Ploquin, F. and Morin, G. 2017. Vertical changes of the Co and Mn speciation along lateritic regolith developed on peridotites (New Caledonia). Geochimica et Cosmochimica Acta 217:1-15, doi:10.1016/j.gca.2017.07.010.
Festin, E. S., Tigabu, M., Chileshe, M.N., Syampungani, S. and Ode´n. P. C. 2019. Progress in restoration of post-mining landscape in Africa. Journal of Forestry Research 30(2):381-396, doi:10.1007/s11676-018-0621-x.
Fu, W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H. and Huang, X. 2014. Mineralogical and geochemical characteristic of serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implication for the laterization process and Ni supergene enrichment in the tropical forest. Journal of Asian Earth Sciences 93:74-88, doi:10.1016/j.jseaes.2014.06.030.
Ilyas, A., Kashiwaya, K. and Koike, K. 2016. Ni grade distribution in laterite characterized from geostatistics, topography, and the paleo-groundwater system in Sorowako, Indonesia. Journal of Geochemical Exploration 165:174-188, doi:10.1016/j.gexplo.2016.03.002.
Kierczak, J., Pietranik, A. and Pedziwiatr, A. 2021. Ultramafic geosystems as a natural source of Ni, Cr and Co to the environment: A review. Science of The Total Environment 755:142620, doi:10.1016/j.scitotenv.2020.142620.
Larondelle, N. and Haase, D. 2012. Valuing post-mining landscapes using an ecosystem services approach – An example from Germany. Ecological Indicator 18:567-574, doi:10.1016/j.ecolind.2012.01.008.
Lin, C., Tong, X., Lu, W., Yan, L., Wu, Y, Nie, C., Chu, C., Long. J. 2005. Environmental impacts of surface mining on mined land, affected streams and agricultural lands in Dabaoshan mine region, southern China. Land Degradation & Development 16:463-474.
Maulana, A., Sanematsu, K. and Sakakibara, M. 2016. An overview on the possibility of Scandium and REE occurrence in Sulawesi. Indonesian Journal on Geosciences 3(2):139-147, doi:10.17014/ijog.3.2.139-147.
Prematuri, R., Turjaman, M., Sato, T. and Tawaraya, K. 2020. The impact of nickel mining on soil properties and growth of two Fast-growing Tropical Tress species. International Journal of Forestry Research 19:1-9, doi:10.1155/2020/8837590.
Roca, N., Pasos, M.S. and Bech, J. 2008. The relationship between WRB soils units and heavy metals content in soils of Catamarca (Argentina). Journal of Geochemical Exploration 96(2-3):77-85, doi:10.1016/j.gexplo.2007.04.004.
Soltani, N., Keshavarzi, B. Moore, F., Sorooshian, A. and Ahmadi, M.R. 2017. Distribution of potentially toxic elements (PTEs) in tailing, soils, and plant around Gol-e-Gohar iron mine, a case study in Iran. Environmental Science and Pollution Research International 24(23):18798-18816, doi:10.1007/s11356-017-9342-5.
Vardaki, C. and Kelepertsis, A. 1999. Environmental impact of heavy metals (Fe, Ni, Cr, Co) in soils water and plants of triada in euboa from ultrabasic rocks and nickeliferous mineralization. Environmental Geochemistry and Health 21:211-226, doi:10.1023/a:1006648428381.
Wuana, R.A. and Okieimen, F.E. 2011. Heavy metal in contaminated soils: A review of sources, chemistry, risk and best available strategies for remediation. International Scholarly Research Network Ecology, Article ID 402647, doi:10.5402/2011/402647.