Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation


  • Heru Bagus Pulunggono Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Siswanto Siswanto Indonesian Research Institute for Biotechnology and Bioindustry
  • Husni Mubarok Agronomy Research PT. Astra Agro Lestari
  • Happy Widiastuti Indonesian Research Institute for Biotechnology and Bioindustry
  • Nizam Tambusai PT. Astra Agro Lestari
  • Moh Zulfajrin Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Syaiful Anwar Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Darmono Taniwiryono Indonesian Research Institute for Biotechnology and Bioindustry
  • Basuki Sumawinata Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Supiandi Sabiham



groundwater table, heterogeneous litter respiration, soil CO2 efflux


The amount of CO2 gas emissions in drained peatland for oil palm cultivation has been widely reported. However, the research addressing the contribution of litter respiration to peat and total respiration and its relationship with several environmental factors is found rare. The aim of this study was to measure peat and heterogeneous litter respiration of drained tropical peat in one year at a distance of 2.25 m and 4.50 m from mature oil palm trees of 14 years using the chamber method (Licor Li-830). In addition to CO2 efflux, we measured other environmental parameters, including peat temperature (10 cm depth), air temperature, groundwater table (GWL), and rainfall. Results showed that the mean total peat respiration (Rt) was 12.06 g CO2 m-2day-1, which consisted of 68% (8.24 g CO2 m-2day-1) peat (Rp) and root (Rr) respiration and 32% (3.84 g CO2  m-2day-1) of litter respiration (Rl) at the distance of 2.25 m from the palm tree. Meanwhile, at a farther distance, the Rt was 12.49 g CO2m-2day-1, the contribution of Rp was 56% (6.78 g CO2 m-2day-1), and Rl was higher than the closest distance (46%; 5.71 g CO2 m-2day-1). Thus, one-year observation resulting the mean Rt and Rr was 0.07–0.08 Mg CO2 ha-1 day-1, while Rl was 0.04–0.06 Mg CO2 ha-1 day-1. The means of Rt, Rp, and Rl were significantly different in the dry season than those recorded in the rainy season. The climatic-related variable such as peat and air temperature were chiefly governing respiration in peat under mature oil palm plantation, whereas the importance of other variables present at particular conditions. This paper provides valuable information concerning respiration in peat, especially for litter contribution and its relationship with environmental factors in peatland, contributing to global CO2 emission. 


Adrianto, H.A., Spracklen, D.V., Arnold, S.R., Sitanggang, I.S. and Syaufina. L. 2020. Forest and land fires are mainly associated with deforestation in Riau Province, Indonesia. Remote Sensing 12(1):3, doi:10.3390/rs12010003.

Ali, M., Taylor, D. and Inubushi, K. 2006. Effects of environmental variations on CO2 efflux from a tropical peatland in Eastern Sumatra. Wetlands 26(2):612-618, doi:10.1672/0277-5212(2006) 26[612:EOEVOC] 2.0.CO;2.

Amatangelo, K.L. and Vitousek, P.M. 2009. Contrasting predictors of fern versus angiosperm decomposition in a common garden. Biotropica 41(2):154-161, doi:10.1111/j.1744-7429.2008.00470.x.

Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E., Suratman, and Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402:115235, doi:10.1016/j.geoderma.2021.115235.

Andriesse, J.P. 1988. Nature and Management of Tropical Peat Soils. FAO Soils Bulletin 59. Rome (IT): FAO - Food and Agriculture Organization of the United Nations.

Arai, H., Hadi, A., Darung, U., Limin, S.H., Hatano, R. and Inubushi, K. 2014. A methanotrophic community in a tropical peatland is unaffected by drainage and forest fires in a tropical peat soil. Soil Science and Plant Nutrition 60(4):577–585, doi:10.1080/00380768. 2014.922034.

Ashton-Butt, A., Aryawan, A.A.K., Hood, A.S.C., Naim, M., Purnomo, D., Suhardi, Wahyuningsih, R., Wilcock, S., Poppy, G.M., Caliman, J.-P., Turner, E. Foster, W., Peh, K.S.H. and Snaddon, J.L. 2018. Understory vegetation in oil palm plantations benefits soil biodiversity and decomposition rates. Frontier in Forest and Global Change 1:10, doi:10.3389/ffgc.2018.00010.

Batubara, S.F. 2019. Heterotrophic respiration in tropical peat under oil palm plantation (Respirasi heterotrofik pada lahan gambut di bawah tegakan kelapa sawit). Doctoral Dissertation. Sriwijaya University. p.56 (in Indonesian).

Batubara, S.F., Agus, F., Rauf, A. and Elfiati, D. 2019. Impact of soil collar insertion depth on microbial respiration measurements from tropical peat under an oil palm plantation. Peat and Mires 24(6):1-11, doi:10.19189/MaP.2018.DW.373.

Berglund, Ö., Berglund, K. and Klemedtsson, L. 2010. A lysimeter study on the effect of temperature on CO2 emission from cultivated peat soils. Geoderma 154:211-218, doi:10.1016/j.geoderma.2008.09.007.

BPS [Badan Pusat Statistik]. 2021. Statistical Yearbook of Indonesia 2021. BPS-Statistic Indonesia. p295-297.

Busman, N.A., Maie, N., Ishak, C.F., Sulaiman, M.F. and Melling, L. 2021. Effect of compaction on soil CO2 and CH4 fluxes from tropical peatland in Sarawak, Malaysia. Environment, Development and Sustainability 23:11646-11659, doi:10.1007/s10668-020-01132-y.

Comeau, L.-P., Hergoualc’h, K., Hartill, J., Smith, J., Verchot, L.V., Peak, D. and Salim, A.M. 2016. How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application?. Geoderma 268:41-51, doi:10.1016/j.geoderma.2016.01.016.

Corley, R.H.V. and Tinker, P.B. 2016. The Oil Palm, Fifth Edition. West Sussex (UK): Blackwell Science Ltd, doi:10.1002/9781118953297.

Couwenberg, J., Dommain, R. and Joosten, H. 2010. Greenhouse gas fluxes from tropical peatlands in South-East Asia. Global Change Biology 16(6):1715-1732, doi:10.1111/j.1365-2486.2009.02016.x.

Dadap, N.C., Hoyt, A.M., Cobb, A.R., Oner, D., Kozinski, M., Fua, P.V., Rao, K., Harvey, C.F. and Connings, A.G. 2021. Drainage canals in Southeast Asian peatlands increase carbon emissions. AGU Advances 2 e2020AV000321, doi:10.1029/2020AV000321.

Dariah, A., Marwanto, S. and Agus, F. 2014. Root- and peatbased CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change 19(6):831-843, doi:10.1007/s11027-013-9515-6.

Dhandapani, S., Evers, S., Ritz, K. and Sjögersten, S. 2020. Nutrient and trace element concentrations influence greenhouse gas emissions from Malaysian tropical peatlands. Soil Use and Management 37:138-150, doi:10.1111/sum.12669.

Dhandapani, S., Ritz, K., Evers, S. and Sjögersten, S. 2019. Environmental impacts as affected by different oil palm cropping systems in tropical peatlands. Agriculture, Ecosystems & Environment 276(1):8-20, doi:10.1016/j.agee.2019.02.012.

Eisenhauer, N. 2016. Plant diversity effects on soil microorganisms: Spatial and temporal heterogeneity of plant inputs increase soil biodiversity. Pedobiologia 59(4):175–177, doi:10.1016/j.pedobi.2016.04.004.

Epron, D. 2010. Separating autotrophic and heterotrophic components of soil respiration: lessons learned from trenching and related root-exclusion experiments. In: Kutsch, W.L., Bahn, M. and Heinemeyer, A. (Eds) Soil Carbon Dynamics: an Integrated Methodology. Cambridge (UK): Cambridge University Press. pp.157–168. doi:10.1017/CBO9780511711794.009.

Gabriel, M., Toader, C., Faul, F., Roßkopf, N., Grundling, P., van Huyssteen, C., Grundling, A.T. and Zeitz, J. 2018. Physical and hydrological properties of peat as proxies for degradation of South African peatlands: Implications for conservation and restoration. Mires and Peat 21(23):1-21, doi:10.19189/MaP.2018.OMB.336.

Hergoualc’h, K., Hendry, D.T., Murdiyarso, D. and Verchot, L.V. 2017. Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry 135(3):203–220, doi:10.1007/s10533-017-0363-4.

Hirano, T., Jauhiainen, J., Inoue, T. and Takahashi ,H. 2009. Controls on the carbon balance of tropical peatlands. Ecosystems 12 873–887, doi:10.1007/s10021-008-9209-1.

Hooijer, A., Page, S., Canadell, J.G., Silvius, M., Kwadijk, J., Wosten, H. and Jauhainen, J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505-1514, doi:10.5194/bg-7-1505-2010.

Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A. and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053-1071, doi:10.5194/bg-9-1053-2012.

Hooijer. A., Page, S., Canadell, J.G., Silvius, M., Kwadijk, J., Wösten, H. and Jauhiainen, J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505-1514, doi:10.5194/bg-7-1505-2010.

Husnain, H., Wigena, I.G.P., Dariah, A., Marwanto, S., Setyanto, P. and Agus, F. 2014. CO2 emissions from tropical drained peat in Sumatra Indonesia. Mitigation and Adaptation Strategies for Global Change 19(6): 845-862, doi:10.1007/s11027-014-9550-y.

Ishikura, K., Hirano, T., Okimoto, Y., Hirata, R., Kiew, F., Melling, L., Aeries, E.B., Loc, K.S., Musin, K.K., Waili, J.W., Wong, G.X. and Ishii, Y. 2018. Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat. Agriculture, Ecosystems & Environment 254:202–212, doi:10.1016/j.agee.2017.11.025.

Ishikura, K., Yamada, H., Toma, Y., Takakai, F., Morishita, T., Darung, U., Limin, A., Limin, S.H. and Hatano, R. 2017. Effect of groundwater level fluctuation on soil respiration rate of tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition 63(1):1-13, doi:10.1080/00380768.2016.1244652.

Itoh, M., Okimoto, Y., Hirano, T. and Kusin, K. 2017. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia. Science of The Total Environment 609(1):906–915, doi:10.1016/j.scitotenv.2017.07.132.

Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. and Vasander, H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environmental Research Letters 9(10):105013, doi:10.1088/1748-9326/9/10/10501.

Jauhiainen, J., Limin, S., Silvennoinen, H. and Vasander, H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hudrological restoration. Ecology 89(12): 3503–3514, doi:10.1890/07-2038.1.

Jovani-Sancho, A.J., Cummins, T. and Byrne, K.A. 2018. Soil respiration partitioning in afforested temperate peatlands. Biogeochemistry 141:1-21, doi:10.1007/s10533-018-0496-0.

Kechavarzi, C., Dawson, Q., Bartlet, M. and Leeds-Harrison, P.B. 2010. The role of soil moisture, temperature and nutrient amandment on CO2 fluks from agricultural peat soil microcosm. Geoderma 154:203-210, doi:10.1016/j.geoderma.2009.02.018.

Khalid, H., Zin, Z.Z. and Anderson, J.M. 1999. Quantification of oil palm biomass and nutrient value in mature planation. II Below-ground biomass. Journal of Oil Palm Research 11(2): 63-71.

Moradi, A., Teh, C.B.S., Goh, K. and Husni, M.H.A. 2013. Decomposition processes and nutrient release patterns of oil palm residues. Annals of Applied Biology 164(2):208-219, doi:10.1111/aab.12094.

Khasanah, N., van Noordwijk, M. and Ningsih, H. 2015. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environmental Science 1(1):1-18, doi:10.1080/23311843.2015.1119964.

Kurnianto, S., Selker, J., Boone Kauffman, J., Mudiyarso, D. and Peterson, J.T. 2019. The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change 24:535-555, doi:10.1007/s11027-018-9802-3.

Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N.J., Martikainen, P.J., Alm, J. and Wilmking, M. 2007. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4:1005-1025, doi:10.5194/bg-4-1005-2007.

Law, S., Eggleton, P., Griffiths, H., Ashton, L. and Parr, C. 2019. Suspended dead wood decomposes slowly in the tropics, with microbial decay greater than termite decay. Ecosystem 22:1176-1188, doi:10.1007/s10021-018-0331-4.

Leifeld, J., Wüst-Galley, C. and Page, S. 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change 9:945-947, doi:10.1038/s41558-019-0615-5.

Linn, D.M. and Doran, J.W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal 48(6):1267, doi:10.2136 /sssaj1984.03615995004800060013x.

Madsen, R., Xu, L., Claassen, B. and McDermitt, D. 2009. Surface monitoring method for carbon capture and storage projects. Energy Procedia 1(1):2161-2168, doi:10.1016/j.egypro.2009.01.281.

Manning, F.C., Kho, L.K., Hill, T.C., Cornulier, T. and Teh, Y.A. 2019. Carbon emissions from oil palm plantations on peat soil. Frontiers in Forests and Global Change 2: 37, doi:10.3389/ffgc.2019.00037.

Marwanto, S. and Agus, F. 2014. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures?. Mitigation and Adaptation Strategies for Global Change 19:809-819, doi:10.1007/s11027-013-9518-3.

Marwanto, S., Sabiham, S. and Funakawa, S. 2019. Importance of CO2 production in subsoil layers of drained tropical peatland under mature oil palm plantation. Soil & Tillage Research 186:206-213, doi:10.1016/j.still.2018.10.021.

McCalmont, J., Kho, L.K., Teh, Y.A., Lewis, K., Chocholek, M., Rumpang, E. and Hill, T. 2020. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Global Change Biology 27:2361-2376, doi:10.1111/gcb.15544.

Melling, L. and Henson, I.E. 2011.Greenhouse gas exchange of tropical peatlands–a review. Journal of Oil Palm Research 23:1087–1095.

Melling, L., Cindy Soo, Y.T., Kah, J.G. and Hatano, R. 2013. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. Journal of Oil Palm Research 25:44-57.

Melling, L., Hatano, R. and Goh, K.J. 2005. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B: Chemical and Physical Meteorology 57(1):1-11, doi:10.3402/tellusb.v57i1.16772.

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S.C. and Page, S.E. 2017. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12:024014, doi:10.1088/1748-9326/aa5b6f.

Miyajima, T., Wada, E., Hanba, Y.T. and Vijarnsorn, P. 1997. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochimica et Cosmochimica Acta 61(17):3739-3751, doi:10.1016/s0016-7037(97)00189-0.

Moradi, A., Teh, C.B.S., Goh, K.J., Husni, M.H.A. and Ishak, C.F. 2014. Decomposition and nutrient release temporal pattern of oil palm residues. Annals of Applied Biology 164(2):208-219, doi:10.1111/aab.12094.

Murayama, S. and Bakar, Z.A. 1996. Decomposition of tropical peat soils: 2. Estimation of in situ decomposition by measurement of CO2 flux. Japan Agricultural Research Quarterly 30:153-158.

Murphy, D.J. 2014. The future of oil palm as a major global crop: Opportunities and challenges. Journal of Oil Palm Research 26:1-24.

Novita, N., Kauffman, J.B., Hergoualc’h, K., Murdiyarso, D., Tryanto, D.H. and Jupesta, J. 2020. Carbon Stocks from Peat Swamp Forest and Oil Palm Plantation in Central Kalimantan, Indonesia. In: Jalante, R., Jupesta, J. and Aldrian, E. (Eds.). Climate Change Research, Policy and Actions in Indonesia. Springer pp. 203-227, doi:10.1007/978-3-030-55536-8_10.

Nurzakiah, S., Sutandi, S., Djajakirana, G., Sudadi, U. and Sabiham, S. 2021. The contribution of organic acid on heterotrophic CO2 flux from tropical peat: a trenching study. Journal of Degraded and Mining Lands Management 9(1): 3035-3044, doi:10.15243/jdmlm.2021.091.3035.

Page, S.E., Morrison, R., Mallins, C., Hooijer, A., Rieley, J.O. and Jauhainen, J. 2011. Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia (ICCT White Paper 15). Washington, DC (US): International Council on Clean Transportation.

Pezeshki, S.R. and DeLaune, R.D. 2012. Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology 1(2):196-221, doi:10.3390/biology1020196.

Prananto, J.A., Minasny, B., Comeau, L.-P., Rudiyanto, R. and Grace, P. 2020. Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biology 26(8):1-18, doi:10.1111/gcb.15147.

Prider, J.N. and Facelli, J.M. 2004. Interactive effects of drought and shade on three arid zone chenopod shrubs with contrasting distributions in relation to tree canopies. Functional Ecology 18(1):67-76, doi:10.1046/j.0269-8463.2004.00810.x.

Pulunggono, H.B., Anwar, S., Mulyanto, B. and Sabiham, S. 2019. Decomposition of oil palm frond and leaflet residues. AGRIVITA: Journal of Agricultural Science 41(3): 524–536, doi:10.17503/agrivita.v41i3.2062.

Putri, V. 2015. Oil palm (Elaeis guineensis) root growth in response to different fertilization practices. MSc Thesis. Wageningen University p.57.

Ramdani, F. and Hino, M. 2013. Land use changes and GHG emissions from tropical forest conversion by oil palm plantations in Riau Province, Indonesia. PLoS ONE 8(7):e70323, doi:10.1371/journal.pone.0070323.

Sabiham, S. 1989. Studies on peat in the coastal plains of Sumatra and Borneo. Part III: Micromorphological study of peat in coastal plains of Jambi, South Kalimantan and Brunei. Southeast Asian Studies 27(3):339–351.

Sabiham, S., Marwanto, S., Watanabe, T., Funakawa, S., Sudadi, U. and Agus, F. 2014. Estimating the relative contributions of root respiration and peat decomposition to the total CO2 flux from peat soil at an oil palm plantation in Sumatra, Indonesia. Tropical Agriculture and Development 58(3):87-93, doi:10.11248/jsta.58.87.

Sabiham, S., Tarigan, S.D., Hariyadi, Las, I., Agus, F., Sukarman, Setyanto, P. and Wahyunto. 2012. Organic carbon storage and management strategies for reducing carbon emission from peatlands: A case study in oil palm plantations in West and Central Kalimantan, Indonesia. Pedologist 55(3):426-434, doi:10.18920/ pedologist.55.3_426.

Sayer, J., Ghazoul, J., Nelson, P. and Boedhihartono, A.K. 2012. Oil palm expansion transforms tropical landscapes and livelihoods. Global Food Security 1(2):114-119, doi:10.1016/j.gfs.2012.10.003.

Sjögersten, S., Black, C.R., Evers, S., Hoyos-Santillan, J., Wright, E.L. and Turner, B.L. 2014. Tropical wetlands: A missing link in the global carbon cycle?. Global Biogeochemical Cycles 28:1371-1386, doi:10.1002/2014GB004844.

Sundari, S., Takashi, H., Yamada, H., Kusin, K. and Limin, S. 2012. Effect of groundwater level on soil respiration in tropical peat swamp forests. Journal of Agricultural Meteorology 68(2):121-134, doi:10.2480/agrmet.68.2.6.

Swails, E., Hergoualc’h, K., Verchot, L., Novita, N. and Lawrence, D. 2021. Spatio-temporal variability of peat CH4 and N2O fluxes and their contribution to peat GHG budgets in Indonesian forests and oil palm plantations. Frontiers in Environmental Science 9:617828, doi:10.3389/fenvs.2021.617828.

Talbot, J.M., Yelle, D.J., Nowick, J. and Treseder, K.K. 2011. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279–295, doi:10.1007/s10533-011-9599-6.

Wakhid, N. and Hirano, T. 2021. Contribution of CO2 emission from litter decomposition in an oil palm plantation on tropical peatland. IOP Conference Series: Earth and Environmental Science 648:012133, doi:10.1088/1755-1315/648/1/012133.

Warren, M., Hergoualc’h, K., Kauffman, J.B., Murdiyarso, D. and Kolka, R. 2017. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: Uncertainties and potential losses from conversion. Carbon Balance and Management 2:12, doi:10.1186/s13021-017-0080-2.

Wijedasa, L.S., Jauhainen, J., Könönen, M., Lampela, M., Vasander, H., Leblanc, M.-C., Evers, S., Smith, T.E.L., Yule, C.M., Varkkey, H., et al. 2017. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology 23:977-982, doi:10.1111/gcb.13516.

Xu, Z., Wang, S., Wang, Z., Dong, Y., Zhang, Y., Liu, S. and Li. J. 2021. Effect of drainage on microbial enzyme activities and communities dependent on depth in peatland soil. Biogeochemistry 155(3):323–341, doi:10.1007/s10533-021-00828-1.

Yeo Joseph, G., N’Dri Julien, K., Edoukou Ettien, F. and Ahui Jean-Luc, D.S. 2020. Changes in surface soil properties and macroinvertebrate communities with the conversion of secondary forests to oil palm (Elaeis guineensis) plantations. Crop and Pasture Science 71:837-849, doi:10.1071/CP19370.

Zhou, Z., Jiang, L., Du, E., Hu, H., Li, Y., Chen, D. and Fang, J. 2013. Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. Journal of Plant Ecology 6(5):325–334, doi:10.1093/jpe/rtt034.








How to Cite

Pulunggono, H. B., Siswanto, S., Mubarok, H., Widiastuti, H., Tambusai, N., Zulfajrin, M., Anwar, S., Taniwiryono, D., Sumawinata, B., & Sabiham, S. (2022). Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation. Journal of Degraded and Mining Lands Management, 9(2), 3247–3263.



Research Article